Julie-Kathryn Graham, Anova Westcott, Shawn Smith, Emlyn Mann, Ray Daniels, Molly Quillin-McEwan, Angel Bahena, Dwight Bello, Christina Kelley
{"title":"Metabolic Profiles of Critical Care Patients to Confirm Sepsis and Further Understand the Metabolic Phenotype of Sepsis.","authors":"Julie-Kathryn Graham, Anova Westcott, Shawn Smith, Emlyn Mann, Ray Daniels, Molly Quillin-McEwan, Angel Bahena, Dwight Bello, Christina Kelley","doi":"10.1097/CNQ.0000000000000540","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis remains a major concern in health care globally. Despite decades of research, incidence is on the rise, and mortality remains high. Costs are staggering. Additionally, the outdated sepsis bundle established based on SIRS, remains the standard by which providers are held accountable. It is now accepted that organ dysfunction in sepsis is secondary to cellular metabolic dysregulation. Technology for metabolic monitoring should be explored for improved, early recognition of sepsis. We sought to investigate the underlying metabolic profile of patients with sepsis, to determine the value of continuous metabolic monitoring technology. The investigators partnered with industry, to trial noninvasive monitoring of the cellular metabolite carbon dioxide, under a prospective, observational design. During the 6-month trial, the investigators collected data from the electronic medical record of patients using the technology, to determine the specific metabolic differences between patients with and without sepsis. The investigators found serum carbon dioxide (paCO2) was significantly lower in patients with sepsis, and, low paCO2 had a significant inverse relationship to serum lactate. This finding supports the notion that paCO2 is low in sepsis secondary to metabolic dysregulation and not hyperventilation, which had historically explained low paCO2 under the SIRS model. Metabolic monitoring is available, easy to apply and manage, and contributes valuable information in the detection of sepsis. Further research should be done to understand trends in serum CO2 and its relationship to the development of sepsis. This study also provides important further support for the emerging understanding of the dysregulated host response in sepsis.</p>","PeriodicalId":10789,"journal":{"name":"Critical Care Nursing Quarterly","volume":"48 1","pages":"8-14"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Care Nursing Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/CNQ.0000000000000540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis remains a major concern in health care globally. Despite decades of research, incidence is on the rise, and mortality remains high. Costs are staggering. Additionally, the outdated sepsis bundle established based on SIRS, remains the standard by which providers are held accountable. It is now accepted that organ dysfunction in sepsis is secondary to cellular metabolic dysregulation. Technology for metabolic monitoring should be explored for improved, early recognition of sepsis. We sought to investigate the underlying metabolic profile of patients with sepsis, to determine the value of continuous metabolic monitoring technology. The investigators partnered with industry, to trial noninvasive monitoring of the cellular metabolite carbon dioxide, under a prospective, observational design. During the 6-month trial, the investigators collected data from the electronic medical record of patients using the technology, to determine the specific metabolic differences between patients with and without sepsis. The investigators found serum carbon dioxide (paCO2) was significantly lower in patients with sepsis, and, low paCO2 had a significant inverse relationship to serum lactate. This finding supports the notion that paCO2 is low in sepsis secondary to metabolic dysregulation and not hyperventilation, which had historically explained low paCO2 under the SIRS model. Metabolic monitoring is available, easy to apply and manage, and contributes valuable information in the detection of sepsis. Further research should be done to understand trends in serum CO2 and its relationship to the development of sepsis. This study also provides important further support for the emerging understanding of the dysregulated host response in sepsis.
期刊介绍:
Critical Care Nursing Quarterly (CCNQ) is a peer-reviewed journal that provides current practice-oriented information for the continuing education and improved clinical practice of critical care professionals, including nurses, physicians, and allied health care professionals.