{"title":"Using machine learning models for predicting monthly iPTH levels in hemodialysis patients.","authors":"Chih-Chieh Hsieh, Chin-Wen Hsieh, Mohy Uddin, Li-Ping Hsu, Hao-Huan Hu, Shabbir Syed-Abdul","doi":"10.1016/j.cmpb.2024.108541","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study was to use machine learning (ML) models to predict monthly iPTH levels in patients undergoing hemodialysis.</p><p><strong>Methods: </strong>We conducted a retrospective study on patients undergoing regular hemodialysis. Patients' blood examinations data was collected from Taiwan Society of Nephrology - Kidney Dialysis, Transplantation (TSN-KiDiT) registration system, and patients' medications data was collected from Pingtung Christian Hospital (PTCH), Taiwan. We used five different ML models to classify patients into three distinct categories based on their iPTH levels: iPTH < 150, iPTH ≥ 150 & iPTH < 600, and iPTH ≥ 600(pg/ml).</p><p><strong>Results: </strong>We ultimately included 1,351 patients in our study and processed the data in four different ways. These methods varied based on the duration of the data (either using data from just one month or continuously over three months) and the number of features used (either all 52 features or only 20 most important features identified by SHapley Additive exPlanations (SHAP) analysis). The XGBoost model, using data from a continuous three-month period and all available features, yielded the best Weighted AUROC (0.922).</p><p><strong>Conclusions: </strong>ML is highly effective in predicting iPTH levels in hemodialysis patients, notably accurate for those with iPTH over 600 pg/ml. This method enables early identification of high-risk patients, reducing reliance on retrospective blood test assessments. Future research should focus on advancing explainable AI methods to foster clinicians' trust, and developing adaptable ML frameworks that could seamlessly integrate with existing healthcare systems.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108541"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study was to use machine learning (ML) models to predict monthly iPTH levels in patients undergoing hemodialysis.
Methods: We conducted a retrospective study on patients undergoing regular hemodialysis. Patients' blood examinations data was collected from Taiwan Society of Nephrology - Kidney Dialysis, Transplantation (TSN-KiDiT) registration system, and patients' medications data was collected from Pingtung Christian Hospital (PTCH), Taiwan. We used five different ML models to classify patients into three distinct categories based on their iPTH levels: iPTH < 150, iPTH ≥ 150 & iPTH < 600, and iPTH ≥ 600(pg/ml).
Results: We ultimately included 1,351 patients in our study and processed the data in four different ways. These methods varied based on the duration of the data (either using data from just one month or continuously over three months) and the number of features used (either all 52 features or only 20 most important features identified by SHapley Additive exPlanations (SHAP) analysis). The XGBoost model, using data from a continuous three-month period and all available features, yielded the best Weighted AUROC (0.922).
Conclusions: ML is highly effective in predicting iPTH levels in hemodialysis patients, notably accurate for those with iPTH over 600 pg/ml. This method enables early identification of high-risk patients, reducing reliance on retrospective blood test assessments. Future research should focus on advancing explainable AI methods to foster clinicians' trust, and developing adaptable ML frameworks that could seamlessly integrate with existing healthcare systems.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.