Predicting cancer content in tiles of lung squamous cell carcinoma tumours with validation against pathologist labels.

IF 7 2区 医学 Q1 BIOLOGY
Salma Dammak, Matthew J Cecchini, Jennifer Coats, Katherina Baranova, Aaron D Ward
{"title":"Predicting cancer content in tiles of lung squamous cell carcinoma tumours with validation against pathologist labels.","authors":"Salma Dammak, Matthew J Cecchini, Jennifer Coats, Katherina Baranova, Aaron D Ward","doi":"10.1016/j.compbiomed.2024.109489","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A growing body of research is using deep learning to explore the relationship between treatment biomarkers for lung cancer patients and cancer tissue morphology on digitized whole slide images (WSIs) of tumour resections. However, these WSIs typically contain non-cancer tissue, introducing noise during model training. As digital pathology models typically start with splitting WSIs into tiles, we propose a model that can be used to exclude non-cancer tiles from the WSIs of lung squamous cell carcinoma (SqCC) tumours.</p><p><strong>Methods: </strong>We obtained 116 WSIs of tumours from 35 different centres from the Cancer Genome Atlas. A pathologist completed or reviewed cancer contours in four regions of interest (ROIs) within each WSIs. We then split the ROIs into tiles labelled with the percentage of cancer tissue within them and trained VGG16 to predict this value, and then we calculated regression error. To measure classification performance and visualize the classification results, we thresholded the predictions and calculated the area under the receiver operating characteristic curve (AUC).</p><p><strong>Results: </strong>The model's median regression error was 4% with a standard deviation of 35%. At a cancer threshold of 50%, the model had an AUC of 0.83. False positives tended to be in tissues that surround cancer, tiles with <50% cancer, and areas with high immune activity. False negatives tended to be microtomy defects.</p><p><strong>Conclusions: </strong>With further validation for each specific research application, the model we describe in this paper could facilitate the development of more effective research pipelines for predicting treatment biomarkers for lung SqCC.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109489"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109489","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A growing body of research is using deep learning to explore the relationship between treatment biomarkers for lung cancer patients and cancer tissue morphology on digitized whole slide images (WSIs) of tumour resections. However, these WSIs typically contain non-cancer tissue, introducing noise during model training. As digital pathology models typically start with splitting WSIs into tiles, we propose a model that can be used to exclude non-cancer tiles from the WSIs of lung squamous cell carcinoma (SqCC) tumours.

Methods: We obtained 116 WSIs of tumours from 35 different centres from the Cancer Genome Atlas. A pathologist completed or reviewed cancer contours in four regions of interest (ROIs) within each WSIs. We then split the ROIs into tiles labelled with the percentage of cancer tissue within them and trained VGG16 to predict this value, and then we calculated regression error. To measure classification performance and visualize the classification results, we thresholded the predictions and calculated the area under the receiver operating characteristic curve (AUC).

Results: The model's median regression error was 4% with a standard deviation of 35%. At a cancer threshold of 50%, the model had an AUC of 0.83. False positives tended to be in tissues that surround cancer, tiles with <50% cancer, and areas with high immune activity. False negatives tended to be microtomy defects.

Conclusions: With further validation for each specific research application, the model we describe in this paper could facilitate the development of more effective research pipelines for predicting treatment biomarkers for lung SqCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信