Counting on AR: EEG responses to incongruent information with real-world context.

IF 7 2区 医学 Q1 BIOLOGY
Michael Wimmer, Alex Pepicelli, Ben Volmer, Neven ElSayed, Andrew Cunningham, Bruce H Thomas, Gernot R Müller-Putz, Eduardo E Veas
{"title":"Counting on AR: EEG responses to incongruent information with real-world context.","authors":"Michael Wimmer, Alex Pepicelli, Ben Volmer, Neven ElSayed, Andrew Cunningham, Bruce H Thomas, Gernot R Müller-Putz, Eduardo E Veas","doi":"10.1016/j.compbiomed.2024.109483","DOIUrl":null,"url":null,"abstract":"<p><p>Augmented Reality (AR) technologies enhance the real world by integrating contextual digital information about physical entities. However, inconsistencies between physical reality and digital augmentations, which may arise from errors in the visualized information or the user's mental context, can considerably impact user experience. This work characterizes the brain dynamics associated with processing incongruent information within an AR environment. To study these effects, we designed an interactive paradigm featuring the manipulation of a Rubik's cube serving as a physical referent. Congruent and incongruent information regarding the cube's current status was presented via symbolic (digits) and non-symbolic (graphs) stimuli, thus examining the impact of different means of data representation. The analysis of electroencephalographic signals from 19 participants revealed the presence of centro-parietal N400 and P600 components following the processing of incongruent information, with significantly increased latencies for non-symbolic stimuli. Additionally, we explored the feasibility of exploiting incongruency effects for brain-computer interfaces. Hence, we implemented decoders using linear discriminant analysis, support vector machines, and EEGNet, achieving comparable performances with all methods. Therefore, this work contributes to the design of adaptive AR systems by demonstrating that above-chance detection of incongruent information based on physiological signals is feasible. The successful decoding of incongruency-induced modulations can inform systems about the current mental state of users without making it explicit, aiming for more coherent and contextually appropriate AR interactions.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109483"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109483","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Augmented Reality (AR) technologies enhance the real world by integrating contextual digital information about physical entities. However, inconsistencies between physical reality and digital augmentations, which may arise from errors in the visualized information or the user's mental context, can considerably impact user experience. This work characterizes the brain dynamics associated with processing incongruent information within an AR environment. To study these effects, we designed an interactive paradigm featuring the manipulation of a Rubik's cube serving as a physical referent. Congruent and incongruent information regarding the cube's current status was presented via symbolic (digits) and non-symbolic (graphs) stimuli, thus examining the impact of different means of data representation. The analysis of electroencephalographic signals from 19 participants revealed the presence of centro-parietal N400 and P600 components following the processing of incongruent information, with significantly increased latencies for non-symbolic stimuli. Additionally, we explored the feasibility of exploiting incongruency effects for brain-computer interfaces. Hence, we implemented decoders using linear discriminant analysis, support vector machines, and EEGNet, achieving comparable performances with all methods. Therefore, this work contributes to the design of adaptive AR systems by demonstrating that above-chance detection of incongruent information based on physiological signals is feasible. The successful decoding of incongruency-induced modulations can inform systems about the current mental state of users without making it explicit, aiming for more coherent and contextually appropriate AR interactions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信