Artificial intelligence for identification of candidates for device-aided therapy in Parkinson's disease: DELIST-PD study.

IF 7 2区 医学 Q1 BIOLOGY
Computers in biology and medicine Pub Date : 2025-02-01 Epub Date: 2024-12-04 DOI:10.1016/j.compbiomed.2024.109504
Eric Freire-Álvarez, Inés Legarda Ramírez, Rocio García-Ramos, Fátima Carrillo, Diego Santos-García, Juan Carlos Gómez-Esteban, Juan Carlos Martínez-Castrillo, Irene Martínez-Torres, Carlos J Madrid-Navarro, María José Pérez-Navarro, Fuensanta Valero-García, Bárbara Vives-Pastor, Laura Muñoz-Delgado, Beatriz Tijero, Carlos Morata Martínez, José M Valls, Ricardo Aler, Inés M Galván, Francisco Escamilla-Sevilla
{"title":"Artificial intelligence for identification of candidates for device-aided therapy in Parkinson's disease: DELIST-PD study.","authors":"Eric Freire-Álvarez, Inés Legarda Ramírez, Rocio García-Ramos, Fátima Carrillo, Diego Santos-García, Juan Carlos Gómez-Esteban, Juan Carlos Martínez-Castrillo, Irene Martínez-Torres, Carlos J Madrid-Navarro, María José Pérez-Navarro, Fuensanta Valero-García, Bárbara Vives-Pastor, Laura Muñoz-Delgado, Beatriz Tijero, Carlos Morata Martínez, José M Valls, Ricardo Aler, Inés M Galván, Francisco Escamilla-Sevilla","doi":"10.1016/j.compbiomed.2024.109504","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In Parkinson's Disease (PD), despite available treatments focusing on symptom alleviation, the effectiveness of conventional therapies decreases over time. This study aims to enhance the identification of candidates for device-aided therapies (DAT) using artificial intelligence (AI), addressing the need for improved treatment selection in advanced PD stages.</p><p><strong>Methods: </strong>This national, multicenter, cross-sectional, observational study involved 1086 PD patients across Spain. Machine learning (ML) algorithms, including CatBoost, support vector machine (SVM), and logistic regression (LR), were evaluated for their ability to identify potential DAT candidates based on clinical and demographic data.</p><p><strong>Results: </strong>The CatBoost algorithm demonstrated superior performance in identifying DAT candidates, with an area under the curve (AUC) of 0.95, sensitivity of 0.91, and specificity of 0.88. It outperformed other ML models in balanced accuracy and negative predictive value. The model identified 23 key features as predictors for suitability for DAT, highlighting the importance of daily \"off\" time, doses of oral levodopa/day, and PD duration. Considering the 5-2-1 criteria, the algorithm identified a decision threshold for DAT candidates as > 4 times levodopa tablets taken daily and/or ≥1.8 h in daily \"off\" time.</p><p><strong>Conclusion: </strong>The study developed a highly discriminative CatBoost model for identifying PD patients candidates for DAT, potentially improving timely and accurate treatment selection. This AI approach offers a promising tool for neurologists, particularly those less experienced with DAT, to optimize referral to Movement Disorder Units.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109504"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: In Parkinson's Disease (PD), despite available treatments focusing on symptom alleviation, the effectiveness of conventional therapies decreases over time. This study aims to enhance the identification of candidates for device-aided therapies (DAT) using artificial intelligence (AI), addressing the need for improved treatment selection in advanced PD stages.

Methods: This national, multicenter, cross-sectional, observational study involved 1086 PD patients across Spain. Machine learning (ML) algorithms, including CatBoost, support vector machine (SVM), and logistic regression (LR), were evaluated for their ability to identify potential DAT candidates based on clinical and demographic data.

Results: The CatBoost algorithm demonstrated superior performance in identifying DAT candidates, with an area under the curve (AUC) of 0.95, sensitivity of 0.91, and specificity of 0.88. It outperformed other ML models in balanced accuracy and negative predictive value. The model identified 23 key features as predictors for suitability for DAT, highlighting the importance of daily "off" time, doses of oral levodopa/day, and PD duration. Considering the 5-2-1 criteria, the algorithm identified a decision threshold for DAT candidates as > 4 times levodopa tablets taken daily and/or ≥1.8 h in daily "off" time.

Conclusion: The study developed a highly discriminative CatBoost model for identifying PD patients candidates for DAT, potentially improving timely and accurate treatment selection. This AI approach offers a promising tool for neurologists, particularly those less experienced with DAT, to optimize referral to Movement Disorder Units.

人工智能识别帕金森病设备辅助治疗候选者:DELIST-PD研究
在帕金森病(PD)中,尽管现有的治疗方法侧重于减轻症状,但传统疗法的有效性随着时间的推移而降低。本研究旨在利用人工智能(AI)增强对设备辅助治疗(DAT)候选者的识别,解决晚期PD患者改进治疗选择的需求。方法:这项全国性、多中心、横断面、观察性研究涉及西班牙1086名PD患者。机器学习(ML)算法,包括CatBoost、支持向量机(SVM)和逻辑回归(LR),评估了它们基于临床和人口统计数据识别潜在DAT候选人的能力。结果:CatBoost算法在识别DAT候选物方面表现出优异的性能,曲线下面积(AUC)为0.95,灵敏度为0.91,特异性为0.88。它在平衡精度和负预测值方面优于其他ML模型。该模型确定了23个关键特征作为DAT适用性的预测因子,强调了每日“关闭”时间、口服左旋多巴剂量/天和PD持续时间的重要性。考虑5-2-1标准,该算法确定了DAT候选人的决策阈值为>,每天服用4次左旋多巴片,并且/或每天“关闭”时间≥1.8 h。结论:该研究建立了一个高度判别的CatBoost模型,用于识别PD患者的DAT候选人,有可能提高及时和准确的治疗选择。这种人工智能方法为神经科医生提供了一个很有前途的工具,特别是那些缺乏数据处理经验的神经科医生,可以优化转介到运动障碍病房。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信