Chukwuebuka Joseph Ejiyi, Zhen Qin, Victor K Agbesi, Ding Yi, Abena A Atwereboannah, Ijeoma A Chikwendu, Oluwatoyosi F Bamisile, Grace-Mercure Bakanina Kissanga, Olusola O Bamisile
{"title":"Advancing cancer diagnosis and prognostication through deep learning mastery in breast, colon, and lung histopathology with ResoMergeNet.","authors":"Chukwuebuka Joseph Ejiyi, Zhen Qin, Victor K Agbesi, Ding Yi, Abena A Atwereboannah, Ijeoma A Chikwendu, Oluwatoyosi F Bamisile, Grace-Mercure Bakanina Kissanga, Olusola O Bamisile","doi":"10.1016/j.compbiomed.2024.109494","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer, a global health threat, demands effective diagnostic solutions to combat its impact on public health, particularly for breast, colon, and lung cancers. Early and accurate diagnosis is essential for successful treatment, prompting the rise of Computer-Aided Diagnosis Systems as reliable and cost-effective tools. Histopathology, renowned for its precision in cancer imaging, has become pivotal in the diagnostic landscape of breast, colon, and lung cancers. However, while deep learning models have been widely explored in this domain, they often face challenges in generalizing to diverse clinical settings and in efficiently capturing both local and global feature representations, particularly for multi-class tasks. This underscores the need for models that can reduce biases, improve diagnostic accuracy, and minimize error susceptibility in cancer classification tasks. To this end, we introduce ResoMergeNet (RMN), an advanced deep-learning model designed for both multi-class and binary cancer classification using histopathological images of breast, colon, and lung. ResoMergeNet integrates the Resboost mechanism which enhances feature representation, and the ConvmergeNet mechanism which optimizes feature extraction, leading to improved diagnostic accuracy. Comparative evaluations against state-of-the-art models show ResoMergeNet's superior performance. Validated on the LC-25000 and BreakHis (400× and 40× magnifications) datasets, ResoMergeNet demonstrates outstanding performance, achieving perfect scores of 100 % in accuracy, sensitivity, precision, and F1 score for binary classification. For multi-class classification with five classes from the LC25000 dataset, it maintains an impressive 99.96 % across all performance metrics. When applied to the BreakHis dataset, ResoMergeNet achieved 99.87 % accuracy, 99.75 % sensitivity, 99.78 % precision, and 99.77 % F1 score at 400× magnification. At 40× magnification, it still delivered robust results with 98.85 % accuracy, sensitivity, precision, and F1 score. These results emphasize the efficacy of ResoMergeNet, marking a substantial advancement in diagnostic and prognostic systems for breast, colon, and lung cancers. ResoMergeNet's superior diagnostic accuracy can significantly reduce diagnostic errors, minimize human biases, and expedite clinical workflows, making it a valuable tool for enhancing cancer diagnosis and treatment outcomes.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109494"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109494","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer, a global health threat, demands effective diagnostic solutions to combat its impact on public health, particularly for breast, colon, and lung cancers. Early and accurate diagnosis is essential for successful treatment, prompting the rise of Computer-Aided Diagnosis Systems as reliable and cost-effective tools. Histopathology, renowned for its precision in cancer imaging, has become pivotal in the diagnostic landscape of breast, colon, and lung cancers. However, while deep learning models have been widely explored in this domain, they often face challenges in generalizing to diverse clinical settings and in efficiently capturing both local and global feature representations, particularly for multi-class tasks. This underscores the need for models that can reduce biases, improve diagnostic accuracy, and minimize error susceptibility in cancer classification tasks. To this end, we introduce ResoMergeNet (RMN), an advanced deep-learning model designed for both multi-class and binary cancer classification using histopathological images of breast, colon, and lung. ResoMergeNet integrates the Resboost mechanism which enhances feature representation, and the ConvmergeNet mechanism which optimizes feature extraction, leading to improved diagnostic accuracy. Comparative evaluations against state-of-the-art models show ResoMergeNet's superior performance. Validated on the LC-25000 and BreakHis (400× and 40× magnifications) datasets, ResoMergeNet demonstrates outstanding performance, achieving perfect scores of 100 % in accuracy, sensitivity, precision, and F1 score for binary classification. For multi-class classification with five classes from the LC25000 dataset, it maintains an impressive 99.96 % across all performance metrics. When applied to the BreakHis dataset, ResoMergeNet achieved 99.87 % accuracy, 99.75 % sensitivity, 99.78 % precision, and 99.77 % F1 score at 400× magnification. At 40× magnification, it still delivered robust results with 98.85 % accuracy, sensitivity, precision, and F1 score. These results emphasize the efficacy of ResoMergeNet, marking a substantial advancement in diagnostic and prognostic systems for breast, colon, and lung cancers. ResoMergeNet's superior diagnostic accuracy can significantly reduce diagnostic errors, minimize human biases, and expedite clinical workflows, making it a valuable tool for enhancing cancer diagnosis and treatment outcomes.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.