An amplitude equation for the conserved-Hopf bifurcation-Derivation, analysis, and assessment.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0222013
Daniel Greve, Uwe Thiele
{"title":"An amplitude equation for the conserved-Hopf bifurcation-Derivation, analysis, and assessment.","authors":"Daniel Greve, Uwe Thiele","doi":"10.1063/5.0222013","DOIUrl":null,"url":null,"abstract":"<p><p>We employ weakly nonlinear theory to derive an amplitude equation for the conserved-Hopf instability, i.e., a generic large-scale oscillatory instability for systems with two conservation laws. The resulting equation represents in the conserved case the equivalent of the complex Ginzburg-Landau equation obtained in the nonconserved case as an amplitude equation for the standard Hopf bifurcation. Considering first the case of a relatively simple symmetric two-component Cahn-Hilliard model with purely nonreciprocal coupling, we derive the nonlinear nonlocal amplitude equation with real coefficients and show that its bifurcation diagram and time evolution well agree with the results for the full model. The solutions of the amplitude equation and their stability are analytically obtained, thereby showing that in such oscillatory phase separation, the suppression of coarsening is universal. Second, we lift the two restrictions and obtain the amplitude equation in the generic case. It has complex coefficients and also shows very good agreement with the full model as exemplified for some transient dynamics that converges to traveling wave states.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0222013","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We employ weakly nonlinear theory to derive an amplitude equation for the conserved-Hopf instability, i.e., a generic large-scale oscillatory instability for systems with two conservation laws. The resulting equation represents in the conserved case the equivalent of the complex Ginzburg-Landau equation obtained in the nonconserved case as an amplitude equation for the standard Hopf bifurcation. Considering first the case of a relatively simple symmetric two-component Cahn-Hilliard model with purely nonreciprocal coupling, we derive the nonlinear nonlocal amplitude equation with real coefficients and show that its bifurcation diagram and time evolution well agree with the results for the full model. The solutions of the amplitude equation and their stability are analytically obtained, thereby showing that in such oscillatory phase separation, the suppression of coarsening is universal. Second, we lift the two restrictions and obtain the amplitude equation in the generic case. It has complex coefficients and also shows very good agreement with the full model as exemplified for some transient dynamics that converges to traveling wave states.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信