Qingyuan Yang, Shiyin Wei, Cen Qiu, Chenjie Han, Zunguo Du, Ning Wu
{"title":"KDM1A epigenetically enhances RAD51 expression to suppress the STING-associated anti-tumor immunity in esophageal squamous cell carcinoma.","authors":"Qingyuan Yang, Shiyin Wei, Cen Qiu, Chenjie Han, Zunguo Du, Ning Wu","doi":"10.1038/s41419-024-07275-4","DOIUrl":null,"url":null,"abstract":"<p><p>Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"882"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07275-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism