Unraveling the Complexity and Advancements of Transdifferentiation Technologies in the Biomedical Field and Their Potential Clinical Relevance.

IF 2.9 4区 医学 Q3 IMMUNOLOGY
Archivum Immunologiae et Therapiae Experimentalis Pub Date : 2024-12-05 eCollection Date: 2025-01-01 DOI:10.2478/aite-2025-0001
Purusottam Mishra, Izabella Biesiada, Payal Gupta, Saeid Ghavami, Jarosław Markowski, Marek J Łos
{"title":"Unraveling the Complexity and Advancements of Transdifferentiation Technologies in the Biomedical Field and Their Potential Clinical Relevance.","authors":"Purusottam Mishra, Izabella Biesiada, Payal Gupta, Saeid Ghavami, Jarosław Markowski, Marek J Łos","doi":"10.2478/aite-2025-0001","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic diseases such as cancer, autoimmunity, and organ failure currently depend on conventional pharmaceutical treatment, which may cause detrimental side effects in the long term. In this regard, cell-based therapy has emerged as a suitable alternative for treating these chronic diseases. Transdifferentiation technologies have evolved as a suitable therapeutic alternative that converts one differentiated somatic cell into another phenotype by using transcription factors (TFs), small molecules, or small, single-stranded, non-coding RNA molecules (miRNA). The transdifferentiation techniques rely on simple, fast, standardized, and versatile protocols with minimal chance of tumorigenicity and genotoxicity. However, there are still challenges and limitations that need to be addressed to enhance their clinical translation percentage in the near future. Taking this into account, we have delineated the features and strategies used in the transdifferentiation techniques. Then, we delved into different intermediate states that were attained during transdifferentiation. Advancements in transdifferentiation techniques in the field of tissue engineering, autoimmunity, and cancer therapy were dissected. Furthermore, limitations, challenges, and future perspectives are outlined in this review to provide a whole new picture of the transdifferentiation techniques. Advancements in molecular biology, interdisciplinary research, bioinformatics, and artificial intelligence will push the frontiers of this technology further to establish new avenues for biomedical research.</p>","PeriodicalId":8389,"journal":{"name":"Archivum Immunologiae et Therapiae Experimentalis","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Immunologiae et Therapiae Experimentalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2478/aite-2025-0001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic diseases such as cancer, autoimmunity, and organ failure currently depend on conventional pharmaceutical treatment, which may cause detrimental side effects in the long term. In this regard, cell-based therapy has emerged as a suitable alternative for treating these chronic diseases. Transdifferentiation technologies have evolved as a suitable therapeutic alternative that converts one differentiated somatic cell into another phenotype by using transcription factors (TFs), small molecules, or small, single-stranded, non-coding RNA molecules (miRNA). The transdifferentiation techniques rely on simple, fast, standardized, and versatile protocols with minimal chance of tumorigenicity and genotoxicity. However, there are still challenges and limitations that need to be addressed to enhance their clinical translation percentage in the near future. Taking this into account, we have delineated the features and strategies used in the transdifferentiation techniques. Then, we delved into different intermediate states that were attained during transdifferentiation. Advancements in transdifferentiation techniques in the field of tissue engineering, autoimmunity, and cancer therapy were dissected. Furthermore, limitations, challenges, and future perspectives are outlined in this review to provide a whole new picture of the transdifferentiation techniques. Advancements in molecular biology, interdisciplinary research, bioinformatics, and artificial intelligence will push the frontiers of this technology further to establish new avenues for biomedical research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: Archivum Immunologiae et Therapiae Experimentalis (AITE), founded in 1953 by Ludwik Hirszfeld, is a bimonthly, multidisciplinary journal. It publishes reviews and full original papers dealing with immunology, experimental therapy, immunogenetics, transplantation, microbiology, immunochemistry and ethics in science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信