Accuracy of radiologists and radiology residents in detection of paediatric appendicular fractures with and without artificial intelligence.

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES
Praveen M Yogendra, Adriel Guang Wei Goh, Sze Ying Yee, Freda Jawan, Kelvin Kay Nguan Koh, Timothy Shao Ern Tan, Tian Kai Woon, Phey Ming Yeap, Min On Tan
{"title":"Accuracy of radiologists and radiology residents in detection of paediatric appendicular fractures with and without artificial intelligence.","authors":"Praveen M Yogendra, Adriel Guang Wei Goh, Sze Ying Yee, Freda Jawan, Kelvin Kay Nguan Koh, Timothy Shao Ern Tan, Tian Kai Woon, Phey Ming Yeap, Min On Tan","doi":"10.1136/bmjhci-2024-101091","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We aim to evaluate the accuracy of radiologists and radiology residents in the detection of paediatric appendicular fractures with and without the help of a commercially available fracture detection artificial intelligence (AI) solution in the hopes of showing potential clinical benefits in a general hospital setting.</p><p><strong>Methods: </strong>This was a retrospective study involving three associate consultants (AC) and three senior residents (SR) in radiology, who acted as readers. One reader from each human group interpreted the radiographs with the aid of AI. Cases were categorised into concordant and discordant cases between each interpreting group. Discordant cases were further evaluated by three independent subspecialty radiology consultants to determine the final diagnosis. A total of 500 anonymised paediatric patient cases (aged 2-15 years) who presented to a tertiary general hospital with a Children's emergency were retrospectively collected. Main outcome measures include the presence of fracture, accuracy of readers with and without AI, and total time taken to interpret the radiographs.</p><p><strong>Results: </strong>The AI solution alone showed the highest accuracy (area under the receiver operating characteristic curve 0.97; AC: 95% CI -0.055 to 0.320, p=0; SR: 95% CI 0.244 to 0.598, p=0). The two readers aided with AI had higher area under curves compared with readers without AI support (AC: 95% CI -0.303 to 0.465, p=0; SR: 95% CI -0.154 to 0.331, p=0). These differences were statistically significant.</p><p><strong>Conclusion: </strong>Our study demonstrates excellent results in the detection of paediatric appendicular fractures using a commercially available AI solution. There is potential for the AI solution to function autonomously.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"31 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: We aim to evaluate the accuracy of radiologists and radiology residents in the detection of paediatric appendicular fractures with and without the help of a commercially available fracture detection artificial intelligence (AI) solution in the hopes of showing potential clinical benefits in a general hospital setting.

Methods: This was a retrospective study involving three associate consultants (AC) and three senior residents (SR) in radiology, who acted as readers. One reader from each human group interpreted the radiographs with the aid of AI. Cases were categorised into concordant and discordant cases between each interpreting group. Discordant cases were further evaluated by three independent subspecialty radiology consultants to determine the final diagnosis. A total of 500 anonymised paediatric patient cases (aged 2-15 years) who presented to a tertiary general hospital with a Children's emergency were retrospectively collected. Main outcome measures include the presence of fracture, accuracy of readers with and without AI, and total time taken to interpret the radiographs.

Results: The AI solution alone showed the highest accuracy (area under the receiver operating characteristic curve 0.97; AC: 95% CI -0.055 to 0.320, p=0; SR: 95% CI 0.244 to 0.598, p=0). The two readers aided with AI had higher area under curves compared with readers without AI support (AC: 95% CI -0.303 to 0.465, p=0; SR: 95% CI -0.154 to 0.331, p=0). These differences were statistically significant.

Conclusion: Our study demonstrates excellent results in the detection of paediatric appendicular fractures using a commercially available AI solution. There is potential for the AI solution to function autonomously.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信