Resonant Soft X-ray Scattering Reveals the Distribution of Dopants in Semicrystalline Conjugated Polymers.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-12-19 Epub Date: 2024-12-05 DOI:10.1021/acs.jpcb.4c05774
Phong H Nguyen, Devon Callan, Evan Plunkett, Max Gruschka, Nima Alizadeh, Matthew R Landsman, Gregory M Su, Eliot Gann, Christopher M Bates, Dean M DeLongchamp, Michael L Chabinyc
{"title":"Resonant Soft X-ray Scattering Reveals the Distribution of Dopants in Semicrystalline Conjugated Polymers.","authors":"Phong H Nguyen, Devon Callan, Evan Plunkett, Max Gruschka, Nima Alizadeh, Matthew R Landsman, Gregory M Su, Eliot Gann, Christopher M Bates, Dean M DeLongchamp, Michael L Chabinyc","doi":"10.1021/acs.jpcb.4c05774","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of counterions and dopants within electrically doped semicrystalline conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT), plays a pivotal role in charge transport. The distribution of counterions in doped films of P3HT with controlled crystallinity was examined using polarized resonant soft X-ray scattering (P-RSoXS). The changes in scattering of doped P3HT films containing trifluoromethanesulfonimide (TFSI<sup>-</sup>) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F<sub>4</sub>TCNQ<sup>•-</sup>) as counterions to the charge carriers revealed distinct differences in their nanostructure. The scattering anisotropy of P-RSoXS from doped blends of P3HT was examined as a function of the soft X-ray absorption edge and found to vary systematically with the composition of crystalline and amorphous domains and by the identity of the counterion. A computational methodology was developed and used to simulate the soft X-ray scattering as a function of morphology and molecular orientation of the counterions. Modeling of the P-RSoXS at N and F K-edges was consistent with a structure where the conjugated plane of F<sub>4</sub>TCNQ<sup>•-</sup> aligns perpendicularly to that of the P3HT backbone in ordered domains. In contrast, TFSI<sup>-</sup> was distributed more uniformly between domains with no significant molecular alignment. The approach developed here demonstrates the capabilities of P-RSoXS in identifying orientation, structural, and compositional distributions within doped conjugated polymers using a computational workflow that is broadly extendable to other soft matter systems.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12597-12611"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05774","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution of counterions and dopants within electrically doped semicrystalline conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT), plays a pivotal role in charge transport. The distribution of counterions in doped films of P3HT with controlled crystallinity was examined using polarized resonant soft X-ray scattering (P-RSoXS). The changes in scattering of doped P3HT films containing trifluoromethanesulfonimide (TFSI-) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ•-) as counterions to the charge carriers revealed distinct differences in their nanostructure. The scattering anisotropy of P-RSoXS from doped blends of P3HT was examined as a function of the soft X-ray absorption edge and found to vary systematically with the composition of crystalline and amorphous domains and by the identity of the counterion. A computational methodology was developed and used to simulate the soft X-ray scattering as a function of morphology and molecular orientation of the counterions. Modeling of the P-RSoXS at N and F K-edges was consistent with a structure where the conjugated plane of F4TCNQ•- aligns perpendicularly to that of the P3HT backbone in ordered domains. In contrast, TFSI- was distributed more uniformly between domains with no significant molecular alignment. The approach developed here demonstrates the capabilities of P-RSoXS in identifying orientation, structural, and compositional distributions within doped conjugated polymers using a computational workflow that is broadly extendable to other soft matter systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信