Probing the Conformational Ensemble of the Amyloid Beta 16-22 Fragment with Parallel-Bias Metadynamics.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2024-12-19 Epub Date: 2024-12-05 DOI:10.1021/acs.jpcb.4c04919
Timur Magsumov, Ilya Ibraev, Igor Sedov
{"title":"Probing the Conformational Ensemble of the Amyloid Beta 16-22 Fragment with Parallel-Bias Metadynamics.","authors":"Timur Magsumov, Ilya Ibraev, Igor Sedov","doi":"10.1021/acs.jpcb.4c04919","DOIUrl":null,"url":null,"abstract":"<p><p>Aβ(16-22) is a segment of the Alzheimer's-related β-amyloid peptide that plays a crucial role in its aggregation. This study applies well-tempered parallel-bias metadynamics to investigate the impact of several denaturants and osmolytes on the conformational ensembles of both termini-capped and uncapped Aβ(16-22) monomers. Comparison of the different sets of collective variables in the metadynamics bias shows that using the set of backbone torsional angles results in better and faster convergence of simulations than employing more general structural characteristics of the short peptide. The equilibrium conformational ensembles of the peptides are characterized in pure water and in the presence of TMAO, urea, guanidinium chloride, and trifluoroethanol. In particular, trifluoroethanol and TMAO are found to increase the population of compact peptide conformations, whereas urea and guanidinium chloride favor extended structures. The analysis of the free energy surfaces in the presence of various substances with a comparison of the behavior of the capped and uncapped peptide forms reveals the role of different types of intrapeptide interactions such as salt bridges, hydrophobic contacts, and hydrogen bonds in stabilization of the compact or extended structures. As compounds reducing the abundance of the compact states of Aβ(16-22) and other disordered peptides are likely to suppress their amyloid fibril formation, simulations in the systems with this short peptide may be useful for the virtual screening of such compounds.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"12333-12347"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04919","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aβ(16-22) is a segment of the Alzheimer's-related β-amyloid peptide that plays a crucial role in its aggregation. This study applies well-tempered parallel-bias metadynamics to investigate the impact of several denaturants and osmolytes on the conformational ensembles of both termini-capped and uncapped Aβ(16-22) monomers. Comparison of the different sets of collective variables in the metadynamics bias shows that using the set of backbone torsional angles results in better and faster convergence of simulations than employing more general structural characteristics of the short peptide. The equilibrium conformational ensembles of the peptides are characterized in pure water and in the presence of TMAO, urea, guanidinium chloride, and trifluoroethanol. In particular, trifluoroethanol and TMAO are found to increase the population of compact peptide conformations, whereas urea and guanidinium chloride favor extended structures. The analysis of the free energy surfaces in the presence of various substances with a comparison of the behavior of the capped and uncapped peptide forms reveals the role of different types of intrapeptide interactions such as salt bridges, hydrophobic contacts, and hydrogen bonds in stabilization of the compact or extended structures. As compounds reducing the abundance of the compact states of Aβ(16-22) and other disordered peptides are likely to suppress their amyloid fibril formation, simulations in the systems with this short peptide may be useful for the virtual screening of such compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信