{"title":"Reacon: a template- and cluster-based framework for reaction condition prediction","authors":"Zihan Wang, Kangjie Lin, Jianfeng Pei, Luhua Lai","doi":"10.1039/d4sc05946h","DOIUrl":null,"url":null,"abstract":"Computer-assisted synthesis planning has emerged as a valuable tool for organic synthesis. Prediction of reaction conditions is crucial for applying the planned synthesis routes. However, achieving diverse suggestions while ensuring the reasonableness of predictions remains an underexplored challenge. In this study, we introduce an innovative method for forecasting reaction conditions using a combination of graph neural networks, reaction templates, and clustering algorithm. Our method, trained on the refined USPTO dataset, excels with a top-3 accuracy of 63.48% in recalling the recorded conditions. Moreover, when focusing solely on recalling reactions within the same cluster, the top-3 accuracy increases to 85.65%. Finally, by applying the method to recently published molecule synthesis routes and achieving an 85.00% top-3 accuracy at the cluster level, we demonstrate our approach's capability to deliver reliable and diverse condition predictions.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"37 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc05946h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Computer-assisted synthesis planning has emerged as a valuable tool for organic synthesis. Prediction of reaction conditions is crucial for applying the planned synthesis routes. However, achieving diverse suggestions while ensuring the reasonableness of predictions remains an underexplored challenge. In this study, we introduce an innovative method for forecasting reaction conditions using a combination of graph neural networks, reaction templates, and clustering algorithm. Our method, trained on the refined USPTO dataset, excels with a top-3 accuracy of 63.48% in recalling the recorded conditions. Moreover, when focusing solely on recalling reactions within the same cluster, the top-3 accuracy increases to 85.65%. Finally, by applying the method to recently published molecule synthesis routes and achieving an 85.00% top-3 accuracy at the cluster level, we demonstrate our approach's capability to deliver reliable and diverse condition predictions.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.