Ultrasound-Aided Large-Scale Optoacoustic Microscopy for Volumetric Angiography and Oximetry

Weiye Li;Zhenyue Chen;Yu-Hang Liu;Johannes Rebling;Urs A. T. Hofmann;Daniil Nozdriukhin;Xosé Luís Deán-Ben;Daniel Razansky
{"title":"Ultrasound-Aided Large-Scale Optoacoustic Microscopy for Volumetric Angiography and Oximetry","authors":"Weiye Li;Zhenyue Chen;Yu-Hang Liu;Johannes Rebling;Urs A. T. Hofmann;Daniil Nozdriukhin;Xosé Luís Deán-Ben;Daniel Razansky","doi":"10.1109/TMI.2024.3512415","DOIUrl":null,"url":null,"abstract":"Given its direct relationship to tissue metabolism and various pathological processes, 3D mapping of blood oxygen saturation (sO2) is essential for advancing our knowledge on oxygen delivery to tissues and evaluating therapeutic efficacy. Optoacoustic microscopy has enabled label-free estimation of sO2 values by exploiting the spectrally distinctive absorption of hemoglobin in its oxygenated and deoxygenated forms. However, quantitative 3D mapping of sO2 distribution over large heterogenous tissue regions is commonly hindered due to the strong spatial and spectral variability of the excitation light fluence. Herein, we capitalize on hybridization between pulse-echo ultrasound and large-scale spectroscopic optoacoustic microscopy readings to accurately delineate the tissue surface, achieve depth-resolved tissue layer segmentation, and comprehensively evaluate the main causes behind inaccurate sO2 estimations with optoacoustic microscopy. Compensation for wavelength-dependent light fluence variations due to relative reflectance and attenuation through multiple tissue layers is further shown to remove spectral noise and restore physiologically relevant sO2 values in the images recorded from the mouse ear and the dorsal murine skin. The ultrasound-aided large-scale optoacoustic microscopy (uLSOM) approach is thus expected to enhance applicability of optoacoustic microscopy for quantitative label-free imaging of tissue oxygenation and metabolism.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 4","pages":"1636-1647"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10779191/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given its direct relationship to tissue metabolism and various pathological processes, 3D mapping of blood oxygen saturation (sO2) is essential for advancing our knowledge on oxygen delivery to tissues and evaluating therapeutic efficacy. Optoacoustic microscopy has enabled label-free estimation of sO2 values by exploiting the spectrally distinctive absorption of hemoglobin in its oxygenated and deoxygenated forms. However, quantitative 3D mapping of sO2 distribution over large heterogenous tissue regions is commonly hindered due to the strong spatial and spectral variability of the excitation light fluence. Herein, we capitalize on hybridization between pulse-echo ultrasound and large-scale spectroscopic optoacoustic microscopy readings to accurately delineate the tissue surface, achieve depth-resolved tissue layer segmentation, and comprehensively evaluate the main causes behind inaccurate sO2 estimations with optoacoustic microscopy. Compensation for wavelength-dependent light fluence variations due to relative reflectance and attenuation through multiple tissue layers is further shown to remove spectral noise and restore physiologically relevant sO2 values in the images recorded from the mouse ear and the dorsal murine skin. The ultrasound-aided large-scale optoacoustic microscopy (uLSOM) approach is thus expected to enhance applicability of optoacoustic microscopy for quantitative label-free imaging of tissue oxygenation and metabolism.
超声辅助大尺度光声显微镜用于体积血管造影和血氧测定
鉴于其与组织代谢和各种病理过程的直接关系,血氧饱和度(sO2)的3D制图对于提高我们对组织氧输送和评估治疗效果的认识至关重要。光声显微镜通过利用血红蛋白在其氧化和脱氧形式下的光谱独特吸收,使sO2值的无标签估计成为可能。然而,由于激发光通量的强烈空间和光谱变异性,通常阻碍了sO2在大型异质组织区域上分布的定量3D制图。在此,我们利用脉冲回波超声和大规模光谱光声显微镜读数之间的杂交来准确描绘组织表面,实现深度分辨的组织层分割,并综合评估光声显微镜不准确sO2估计的主要原因。通过多个组织层对相对反射率和衰减引起的波长依赖的光影响变化进行补偿,进一步表明可以消除光谱噪声并恢复小鼠耳和小鼠背皮肤记录的图像中生理相关的sO2值。因此,超声辅助大规模光声显微镜(uLSOM)方法有望增强光声显微镜在组织氧合和代谢的定量无标记成像中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信