Constraints on the primordial black hole abundance through scalar-induced gravitational waves from Advanced LIGO and Virgo's first three observing runs
Yang Jiang, Chen Yuan, Chong-Zhi Li and Qing-Guo Huang
{"title":"Constraints on the primordial black hole abundance through scalar-induced gravitational waves from Advanced LIGO and Virgo's first three observing runs","authors":"Yang Jiang, Chen Yuan, Chong-Zhi Li and Qing-Guo Huang","doi":"10.1088/1475-7516/2024/12/016","DOIUrl":null,"url":null,"abstract":"As a promising dark matter candidate, primordial black holes (PBHs) lighter than ∼ 10-18M⊙ are supposed to have evaporated by today through Hawking radiation. This scenario is challenged by the memory burden effect, which suggests that the evaporation of black holes may slow down significantly after they have emitted about half of their initial mass. We explore the astrophysical implications of the memory burden effect on the PBH abundance by today and the possibility for PBHs lighter than ∼ 10-18M⊙ to persist as dark matter. Our analysis utilizes current LIGO-Virgo-KAGRA data to constrain the primordial power spectrum and infer the PBH abundance. We find a null detection of scalar-induced gravitational waves that accompanied the formation of the PBHs. Then we find that PBHs are ruled out within the mass range ∼ [10-24,10-19]M⊙. Furthermore, we expect that next-generation gravitational wave detectors, such as the Einstein Telescope and the Cosmic Explorer, will provide even more stringent constraints. Our results indicate that future detectors can reach sensitivities that could rule out PBH as dark matter within ∼ [10-29M⊙,10-16M⊙] in the null detection of scalar-induced gravitational waves.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"4 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/016","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
As a promising dark matter candidate, primordial black holes (PBHs) lighter than ∼ 10-18M⊙ are supposed to have evaporated by today through Hawking radiation. This scenario is challenged by the memory burden effect, which suggests that the evaporation of black holes may slow down significantly after they have emitted about half of their initial mass. We explore the astrophysical implications of the memory burden effect on the PBH abundance by today and the possibility for PBHs lighter than ∼ 10-18M⊙ to persist as dark matter. Our analysis utilizes current LIGO-Virgo-KAGRA data to constrain the primordial power spectrum and infer the PBH abundance. We find a null detection of scalar-induced gravitational waves that accompanied the formation of the PBHs. Then we find that PBHs are ruled out within the mass range ∼ [10-24,10-19]M⊙. Furthermore, we expect that next-generation gravitational wave detectors, such as the Einstein Telescope and the Cosmic Explorer, will provide even more stringent constraints. Our results indicate that future detectors can reach sensitivities that could rule out PBH as dark matter within ∼ [10-29M⊙,10-16M⊙] in the null detection of scalar-induced gravitational waves.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.