C.S. Hyun , J. Singh , M. Panchal , M.S. Kim , A. Komissarov , K.S. Shin , S.-H. Choi
{"title":"Deformation mechanisms in pure Mg single crystal under erichsen test: Experimental observations and crystal plasticity predictions","authors":"C.S. Hyun , J. Singh , M. Panchal , M.S. Kim , A. Komissarov , K.S. Shin , S.-H. Choi","doi":"10.1016/j.ijplas.2024.104198","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, the deformation mechanisms in a pure Mg single crystal deformed under the Erichsen test were investigated. The specimens were deformed for different punch strokes under a given crystallographic orientation relationship with respect to the punch direction at room temperature (RT). The electron backscattered diffraction (EBSD) technique was used for the microstructural study of the deformed specimens. The analysis showed that thin twin bands (TBs), consisting of several twin variants, were heterogeneously generated throughout the specimens. In particular, the specimen with the highest Erichsen Index (IE) value of 6.8 mm showed the most significant twinning activity throughout the thickness. The high stretch formability in the given crystallographic orientation is achieved due to the significant tensile twinning activity, which generates a favorable crystal orientation for the activation of basal slip under subsequent deformation. Furthermore, the crystal plasticity finite element method (CPFEM) was used to elucidate the heterogeneity observed during the experimental analysis by studying the strain component generated, the relative activity of different deformation modes, and the accumulated volume fraction of different twinning variants.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"184 ","pages":"Article 104198"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924003255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, the deformation mechanisms in a pure Mg single crystal deformed under the Erichsen test were investigated. The specimens were deformed for different punch strokes under a given crystallographic orientation relationship with respect to the punch direction at room temperature (RT). The electron backscattered diffraction (EBSD) technique was used for the microstructural study of the deformed specimens. The analysis showed that thin twin bands (TBs), consisting of several twin variants, were heterogeneously generated throughout the specimens. In particular, the specimen with the highest Erichsen Index (IE) value of 6.8 mm showed the most significant twinning activity throughout the thickness. The high stretch formability in the given crystallographic orientation is achieved due to the significant tensile twinning activity, which generates a favorable crystal orientation for the activation of basal slip under subsequent deformation. Furthermore, the crystal plasticity finite element method (CPFEM) was used to elucidate the heterogeneity observed during the experimental analysis by studying the strain component generated, the relative activity of different deformation modes, and the accumulated volume fraction of different twinning variants.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.