Dynamics of infectious disease mathematical model through unsupervised stochastic neural network paradigm.

Waseem, Sabir Ali, Aatif Ali, Adel Thaljaoui, Mutum Zico Meetei
{"title":"Dynamics of infectious disease mathematical model through unsupervised stochastic neural network paradigm.","authors":"Waseem, Sabir Ali, Aatif Ali, Adel Thaljaoui, Mutum Zico Meetei","doi":"10.1016/j.compbiolchem.2024.108291","DOIUrl":null,"url":null,"abstract":"<p><p>The viruses has spread globally and have been impacted lives of people socially and economically, which causes immense suffering throughout the world. Thousands of people died and millions of illnesses were brought, by the outbreak worldwide. In order to control the coronavirus pandemic, mathematical modeling proved to be an invaluable tool for analyzing and determining the potential and severity of the illness. This work proposed and assessed a deterministic six-compartment model with a novel stochastic neural network. The significance of the proposed model was demonstrated by numerical simulation in which the results are agreed with sensitivity analysis. Furthermore, the efficacy of stochastic neural network has been proven with the help of numerical simulations. Some investigations have been conducted through graphs and tables that how the vaccination process is helpful to minimize stress in society. The numerical simulations also focused on preventing the community-wide spread of the disease. The lowest residual errors have been achieved by our proposed stochastic neural network and compared with numerical solvers to assess the accuracy and robustness of the proposed approach.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108291"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The viruses has spread globally and have been impacted lives of people socially and economically, which causes immense suffering throughout the world. Thousands of people died and millions of illnesses were brought, by the outbreak worldwide. In order to control the coronavirus pandemic, mathematical modeling proved to be an invaluable tool for analyzing and determining the potential and severity of the illness. This work proposed and assessed a deterministic six-compartment model with a novel stochastic neural network. The significance of the proposed model was demonstrated by numerical simulation in which the results are agreed with sensitivity analysis. Furthermore, the efficacy of stochastic neural network has been proven with the help of numerical simulations. Some investigations have been conducted through graphs and tables that how the vaccination process is helpful to minimize stress in society. The numerical simulations also focused on preventing the community-wide spread of the disease. The lowest residual errors have been achieved by our proposed stochastic neural network and compared with numerical solvers to assess the accuracy and robustness of the proposed approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信