A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.

Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S
{"title":"A hybrid EfficientNet-DbneAlexnet for brain tumor detection using MRI images.","authors":"Vasavi G, Vaddadi Vasudha Rani, Sreenu Ponnada, Jyothi S","doi":"10.1016/j.compbiolchem.2024.108279","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108279"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of abnormal cells in the brain presents a serious risk to the health of humans as it can result in death. Since these tumors have a varied range of shapes, sizes, and positions, identifying Brain Tumors (BTs) is challenging. Magnetic Resonance Images (MRI) are most utilized for identifying malignant tumors. This paper develops a new approach, named EfficientNet-Deep batch normalized eLUAlexnet (EfficientNet-DbneAlexnet) for detecting BTs. Firstly, the input MRI image is transmitted for image enhancement. Here, the image is enhanced by the Piecewise Linear Transformation (PLT). After this, skull stripping is carried out, which is performed by the Fuzzy Local Information C Means (FLICM). Following this, the tumor area in the image is segmented with the help of a Projective Adversarial Network (PAN). The segmented image is later applied to the feature extraction module, wherein features like textural and statistical features are extracted. Finally, the BT detection is accomplished using the developed EfficientNet-DbneAlexnet, which is created by assimilating EfficientNet and Deep batch normalized eLUAlexnet (DbneAlexnet). The results demonstrate that EfficientNet-DbneAlexnet obtained a sensitivity of 90.36 %, accuracy of 92.77 %, and specificity of 91.82 %.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信