{"title":"Teaching spin symmetry while learning neural network wave functions","authors":"Yongle Li, Yuhao Chen, Xiao He","doi":"10.1038/s43588-024-00727-z","DOIUrl":null,"url":null,"abstract":"By developing an efficient spin symmetry penalty, a recent study has substantially accelerated the calculation of accurate energies with correct spin states in variational Monte Carlo for both ground and excited states of quantum many-particle systems.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 12","pages":"884-885"},"PeriodicalIF":12.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00727-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
By developing an efficient spin symmetry penalty, a recent study has substantially accelerated the calculation of accurate energies with correct spin states in variational Monte Carlo for both ground and excited states of quantum many-particle systems.