Continuous Operators from Spaces of Lipschitz Functions.

IF 1.1 3区 数学 Q1 MATHEMATICS
Results in Mathematics Pub Date : 2025-01-01 Epub Date: 2024-12-02 DOI:10.1007/s00025-024-02323-z
Christian Bargetz, Jerzy Kąkol, Damian Sobota
{"title":"Continuous Operators from Spaces of Lipschitz Functions.","authors":"Christian Bargetz, Jerzy Kąkol, Damian Sobota","doi":"10.1007/s00025-024-02323-z","DOIUrl":null,"url":null,"abstract":"<p><p>We study the existence of continuous (linear) operators from the Banach spaces <math> <mrow> <msub><mrow><mspace></mspace> <mtext>Lip</mtext> <mspace></mspace></mrow> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> of Lipschitz functions on infinite metric spaces <i>M</i> vanishing at a distinguished point and from their predual spaces <math><mrow><mi>F</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </math> onto certain Banach spaces, including <i>C</i>(<i>K</i>)-spaces and the spaces <math><msub><mi>c</mi> <mn>0</mn></msub> </math> and <math><msub><mi>ℓ</mi> <mn>1</mn></msub> </math> . For pairs of spaces <math> <mrow> <msub><mrow><mspace></mspace> <mtext>Lip</mtext> <mspace></mspace></mrow> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> and <i>C</i>(<i>K</i>) we prove that if they are endowed with topologies weaker than the norm topology, then usually no continuous (linear or not) surjection exists between those spaces. It is also showed that if a metric space <i>M</i> contains a bilipschitz copy of the unit sphere <math><msub><mi>S</mi> <msub><mi>c</mi> <mn>0</mn></msub> </msub> </math> of the space <math><msub><mi>c</mi> <mn>0</mn></msub> </math> , then <math> <mrow> <msub><mrow><mspace></mspace> <mtext>Lip</mtext> <mspace></mspace></mrow> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> admits a continuous operator onto <math><msub><mi>ℓ</mi> <mn>1</mn></msub> </math> and hence onto <math><msub><mi>c</mi> <mn>0</mn></msub> </math> . Using this, we provide several conditions for a space <i>M</i> implying that <math> <mrow> <msub><mrow><mspace></mspace> <mtext>Lip</mtext> <mspace></mspace></mrow> <mn>0</mn></msub> <mrow><mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </mrow> </math> is not a Grothendieck space. Finally, we obtain a new characterization of the Schur property for Lipschitz-free spaces: a space <math><mrow><mi>F</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </math> has the Schur property if and only if for every complete discrete metric space <i>N</i> with cardinality <i>d</i>(<i>M</i>) the spaces <math><mrow><mi>F</mi> <mo>(</mo> <mi>M</mi> <mo>)</mo></mrow> </math> and <math><mrow><mi>F</mi> <mo>(</mo> <mi>N</mi> <mo>)</mo></mrow> </math> are weakly sequentially homeomorphic.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"80 1","pages":"5"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02323-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence of continuous (linear) operators from the Banach spaces Lip 0 ( M ) of Lipschitz functions on infinite metric spaces M vanishing at a distinguished point and from their predual spaces F ( M ) onto certain Banach spaces, including C(K)-spaces and the spaces c 0 and 1 . For pairs of spaces Lip 0 ( M ) and C(K) we prove that if they are endowed with topologies weaker than the norm topology, then usually no continuous (linear or not) surjection exists between those spaces. It is also showed that if a metric space M contains a bilipschitz copy of the unit sphere S c 0 of the space c 0 , then Lip 0 ( M ) admits a continuous operator onto 1 and hence onto c 0 . Using this, we provide several conditions for a space M implying that Lip 0 ( M ) is not a Grothendieck space. Finally, we obtain a new characterization of the Schur property for Lipschitz-free spaces: a space F ( M ) has the Schur property if and only if for every complete discrete metric space N with cardinality d(M) the spaces F ( M ) and F ( N ) are weakly sequentially homeomorphic.

Lipschitz函数空间中的连续算子。
本文研究了在无穷度量空间M上消失于一点的Lipschitz函数的Banach空间Lip 0 (M)上连续(线性)算子的存在性,以及从它们的前偶空间F (M)到某些Banach空间,包括C(K)-空间和C 0和1空间。对于空间lip0 (M)和C(K)对,我们证明了如果赋予它们比范数拓扑弱的拓扑,那么在这些空间之间通常不存在连续的(线性的或非线性的)抛射。还证明了如果度量空间M包含空间c 0的单位球sc 0的bilipschitz副本,则lip0 (M)允许一个连续算子映射到1上,从而映射到c 0上。利用这一点,我们为空间M提供了几个条件,表明lip0 (M)不是格罗滕迪克空间。最后,我们得到了Lipschitz-free空间的Schur性质的一个新的刻画:空间F (M)具有Schur性质当且仅当对于每一个具有cardinality d(M)的完备离散度量空间N,空间F (M)和F (N)是弱序同胚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信