Pymportx: facilitating next-generation transcriptomics analysis in Python.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-11-15 eCollection Date: 2024-12-01 DOI:10.1093/nargab/lqae160
Paula Pena González, Dafne Lozano-Paredes, José Luis Rojo-Álvarez, Luis Bote-Curiel, Víctor Javier Sánchez-Arévalo Lobo
{"title":"Pymportx: facilitating next-generation transcriptomics analysis in Python.","authors":"Paula Pena González, Dafne Lozano-Paredes, José Luis Rojo-Álvarez, Luis Bote-Curiel, Víctor Javier Sánchez-Arévalo Lobo","doi":"10.1093/nargab/lqae160","DOIUrl":null,"url":null,"abstract":"<p><p>The efficient importation of quantified gene expression data is pivotal in transcriptomics. Historically, the R package Tximport addressed this need by enabling seamless data integration from various quantification tools. However, the Python community lacked a corresponding tool, restricting cross-platform bioinformatics interoperability. We introduce Pymportx, a Python adaptation of Tximport, which replicates and extends the original package's functionalities. Pymportx maintains the integrity and accuracy of gene expression data while improving processing speed and integration within the Python ecosystem. It supports new data formats and includes tools for enhanced data exploration and analysis. Available under the MIT license, Pymportx integrates smoothly with Python's bioinformatics tools, facilitating a unified and efficient workflow across the R and Python ecosystems. This advancement not only broadens access to Python's extensive toolset but also fosters interdisciplinary collaboration and the development of cutting-edge bioinformatics analyses.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae160"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient importation of quantified gene expression data is pivotal in transcriptomics. Historically, the R package Tximport addressed this need by enabling seamless data integration from various quantification tools. However, the Python community lacked a corresponding tool, restricting cross-platform bioinformatics interoperability. We introduce Pymportx, a Python adaptation of Tximport, which replicates and extends the original package's functionalities. Pymportx maintains the integrity and accuracy of gene expression data while improving processing speed and integration within the Python ecosystem. It supports new data formats and includes tools for enhanced data exploration and analysis. Available under the MIT license, Pymportx integrates smoothly with Python's bioinformatics tools, facilitating a unified and efficient workflow across the R and Python ecosystems. This advancement not only broadens access to Python's extensive toolset but also fosters interdisciplinary collaboration and the development of cutting-edge bioinformatics analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信