Predicting the pro-longevity or anti-longevity effect of model organism genes with enhanced Gaussian noise augmentation-based contrastive learning on protein-protein interaction networks.
{"title":"Predicting the pro-longevity or anti-longevity effect of model organism genes with enhanced Gaussian noise augmentation-based contrastive learning on protein-protein interaction networks.","authors":"Ibrahim Alsaggaf, Alex A Freitas, Cen Wan","doi":"10.1093/nargab/lqae153","DOIUrl":null,"url":null,"abstract":"<p><p>Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or anti-longevity effect of four model organisms' ageing-related genes by exploiting protein-protein interaction (PPI) networks. The experimental results suggest that EGsCL successfully outperformed the conventional Gaussian noise augmentation-based contrastive learning methods and obtained state-of-the-art performance on three model organisms' predictive tasks when merely relying on PPI network data. In addition, we use EGsCL to predict 10 novel pro-/anti-longevity mouse genes and discuss the support for these predictions in the literature.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae153"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or anti-longevity effect of four model organisms' ageing-related genes by exploiting protein-protein interaction (PPI) networks. The experimental results suggest that EGsCL successfully outperformed the conventional Gaussian noise augmentation-based contrastive learning methods and obtained state-of-the-art performance on three model organisms' predictive tasks when merely relying on PPI network data. In addition, we use EGsCL to predict 10 novel pro-/anti-longevity mouse genes and discuss the support for these predictions in the literature.