{"title":"LC-MS-based quantitation of proteomic changes induced by Norcantharidin in MTB-Treated macrophages.","authors":"Yi-Lin Wu, Yuan-Ting Li, Gan-Bin Liu, Jin-Lin Wu, Xiao-Ran Liu, Xin-Xuan Gao, Qi-Dan Huang, Jin Liang, Jia-Yi Ouyang, Yi-Ran Ding, Jun-Yi Wu, Yuan-Bin Lu, Yu-Chi Gao, Xiao-Zhen Cai, Jun-Ai Zhang","doi":"10.1186/s12953-024-00235-y","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.</p>","PeriodicalId":20857,"journal":{"name":"Proteome Science","volume":"22 1","pages":"13"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619108/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteome Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12953-024-00235-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis drug resistance contributes to the spread of tuberculosis. Immunotherapy is an effective strategy for treating tuberculosis, with the regulation of macrophage-mediated anti-tuberculosis immunity being crucial. Norcantharidin (NCTD), a drug used in tumor immunotherapy, has significant immunomodulatory effects. Thus, NCTD may have an anti-tuberculosis role by regulating immunity. Understanding how NCTD affects the proteome of Mtb-infected macrophages can provide valuable insights into potential treatments. This study aimed to investigate the impact of NCTD (10 μg/mL) on the proteome of macrophages infected with Mtb H37Ra using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 69 differentially regulated proteins (DRPs) were identified, with 28 up-regulated and 41 down-regulated in the NCTD-treated group. Validation of six DRPs (CLTCL1, VAV1, SP1, TRIM24, MYO1G, and WDR70) by Western blot analysis confirmed the accuracy of the LC-MS/MS method used in this study. NCTD modulates various protein expressions involved in chromatin-modifying enzymes, RHO GTPases activating PAKs, Fc gamma R-mediated phagocytosis, T cell receptor signaling pathway, and antigen processing and presentation. Overall, the research provides new insights into the effects of NCTD on the proteome of Mtb-infected macrophages. The identified changes highlight potential targets for future therapeutic interventions aimed at enhancing host immunity against Mtb infection or developing new anti-TB drugs based on these findings.
期刊介绍:
Proteome Science is an open access journal publishing research in the area of systems studies. Proteome Science considers manuscripts based on all aspects of functional and structural proteomics, genomics, metabolomics, systems analysis and metabiome analysis. It encourages the submissions of studies that use large-scale or systems analysis of biomolecules in a cellular, organismal and/or environmental context.
Studies that describe novel biological or clinical insights as well as methods-focused studies that describe novel methods for the large-scale study of any and all biomolecules in cells and tissues, such as mass spectrometry, protein and nucleic acid microarrays, genomics, next-generation sequencing and computational algorithms and methods are all within the scope of Proteome Science, as are electron topography, structural methods, proteogenomics, chemical proteomics, stem cell proteomics, organelle proteomics, plant and microbial proteomics.
In spite of its name, Proteome Science considers all aspects of large-scale and systems studies because ultimately any mechanism that results in genomic and metabolomic changes will affect or be affected by the proteome. To reflect this intrinsic relationship of biological systems, Proteome Science will consider all such articles.