Few-shot medical image segmentation with high-fidelity prototypes.

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Medical image analysis Pub Date : 2025-02-01 Epub Date: 2024-11-30 DOI:10.1016/j.media.2024.103412
Song Tang, Shaxu Yan, Xiaozhi Qi, Jianxin Gao, Mao Ye, Jianwei Zhang, Xiatian Zhu
{"title":"Few-shot medical image segmentation with high-fidelity prototypes.","authors":"Song Tang, Shaxu Yan, Xiaozhi Qi, Jianxin Gao, Mao Ye, Jianwei Zhang, Xiatian Zhu","doi":"10.1016/j.media.2024.103412","DOIUrl":null,"url":null,"abstract":"<p><p>Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labeled training sample per class. Despite the prototype based approaches have achieved substantial success, existing models are limited to the imaging scenarios with considerably distinct objects and not highly complex background, e.g., natural images. This makes such models suboptimal for medical imaging with both conditions invalid. To address this problem, we propose a novel DetailSelf-refinedPrototypeNetwork (DSPNet) to construct high-fidelity prototypes representing the object foreground and the background more comprehensively. Specifically, to construct global semantics while maintaining the captured detail semantics, we learn the foreground prototypes by modeling the multimodal structures with clustering and then fusing each in a channel-wise manner. Considering that the background often has no apparent semantic relation in the spatial dimensions, we integrate channel-specific structural information under sparse channel-aware regulation. Extensive experiments on three challenging medical image benchmarks show the superiority of DSPNet over previous state-of-the-art methods. The code and data are available at https://github.com/tntek/DSPNet.</p>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"103412"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2024.103412","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labeled training sample per class. Despite the prototype based approaches have achieved substantial success, existing models are limited to the imaging scenarios with considerably distinct objects and not highly complex background, e.g., natural images. This makes such models suboptimal for medical imaging with both conditions invalid. To address this problem, we propose a novel DetailSelf-refinedPrototypeNetwork (DSPNet) to construct high-fidelity prototypes representing the object foreground and the background more comprehensively. Specifically, to construct global semantics while maintaining the captured detail semantics, we learn the foreground prototypes by modeling the multimodal structures with clustering and then fusing each in a channel-wise manner. Considering that the background often has no apparent semantic relation in the spatial dimensions, we integrate channel-specific structural information under sparse channel-aware regulation. Extensive experiments on three challenging medical image benchmarks show the superiority of DSPNet over previous state-of-the-art methods. The code and data are available at https://github.com/tntek/DSPNet.

基于高保真原型的少镜头医学图像分割。
少射语义分割(FSS)的目的是使预训练模型适应新的类,每个类只有一个标记的训练样本。尽管基于原型的方法已经取得了巨大的成功,但现有的模型仅限于具有相当不同的物体和不高度复杂的背景的成像场景,例如自然图像。这使得这种模型在两种情况下都不适合医学成像。为了解决这个问题,我们提出了一种新的detailself - refinedprototypennetwork (dpnet)来构建更全面地代表对象前景和背景的高保真原型。具体来说,为了在保持捕获的细节语义的同时构建全局语义,我们通过聚类对多模态结构建模,然后以通道方式融合每个结构来学习前景原型。考虑到背景在空间维度上往往没有明显的语义关系,我们在稀疏的信道感知调节下集成了特定信道的结构信息。在三个具有挑战性的医学图像基准上进行的广泛实验表明,dpspnet优于以前最先进的方法。代码和数据可在https://github.com/tntek/DSPNet上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信