Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Gabriel Corrêa Veríssimo, Rafaela Salgado Ferreira, Vinícius Gonçalves Maltarollo
{"title":"Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design.","authors":"Gabriel Corrêa Veríssimo, Rafaela Salgado Ferreira, Vinícius Gonçalves Maltarollo","doi":"10.1002/minf.202400305","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual screening (VS) in drug design employs computational methodologies to systematically rank molecules from a virtual compound library based on predicted features related to their biological activities or chemical properties. The recent expansion in commercially accessible compound libraries and the advancements in artificial intelligence (AI) and computational power - including enhanced central processing units (CPUs), graphics processing units (GPUs), high-performance computing (HPC), and cloud computing - have significantly expanded our capacity to screen libraries containing over 10<sup>9</sup> molecules. Herein, we review the concept of ultra-large virtual screening (ULVS), focusing on the various algorithms and methodologies employed for virtual screening at this scale. In this context, we present the software utilized, applications, and results of different approaches, such as brute force docking, reaction-based docking approaches, machine learning (ML) strategies applied to docking or other VS methods, and similarity/pharmacophore search-based techniques. These examples represent a paradigm shift in the drug discovery process, demonstrating not only the feasibility of billion-scale compound screening but also their potential to identify hit candidates and increase the structural diversity of novel compounds with biological activities.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400305"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual screening (VS) in drug design employs computational methodologies to systematically rank molecules from a virtual compound library based on predicted features related to their biological activities or chemical properties. The recent expansion in commercially accessible compound libraries and the advancements in artificial intelligence (AI) and computational power - including enhanced central processing units (CPUs), graphics processing units (GPUs), high-performance computing (HPC), and cloud computing - have significantly expanded our capacity to screen libraries containing over 109 molecules. Herein, we review the concept of ultra-large virtual screening (ULVS), focusing on the various algorithms and methodologies employed for virtual screening at this scale. In this context, we present the software utilized, applications, and results of different approaches, such as brute force docking, reaction-based docking approaches, machine learning (ML) strategies applied to docking or other VS methods, and similarity/pharmacophore search-based techniques. These examples represent a paradigm shift in the drug discovery process, demonstrating not only the feasibility of billion-scale compound screening but also their potential to identify hit candidates and increase the structural diversity of novel compounds with biological activities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信