From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL
Alexey A Orlov, Tagir N Akhmetshin, Dragos Horvath, Gilles Marcou, Alexandre Varnek
{"title":"From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization.","authors":"Alexey A Orlov, Tagir N Akhmetshin, Dragos Horvath, Gilles Marcou, Alexandre Varnek","doi":"10.1002/minf.202400265","DOIUrl":null,"url":null,"abstract":"<p><p>Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400265"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信