Andrés de la Rosa, Nicole G Metzendorf, Jonathan Efverström, Ana Godec, Dag Sehlin, Jamie Morrison, Greta Hultqvist
{"title":"Lowering the affinity of single-chain monovalent BBB shuttle scFc-scFv8D3 prolongs its half-life and increases brain concentration.","authors":"Andrés de la Rosa, Nicole G Metzendorf, Jonathan Efverström, Ana Godec, Dag Sehlin, Jamie Morrison, Greta Hultqvist","doi":"10.1016/j.neurot.2024.e00492","DOIUrl":null,"url":null,"abstract":"<p><p>Monoclonal antibody therapeutics is a massively growing field. Progress in providing monoclonal antibody therapeutics to treat brain disorders is complicated, due to the impermeability of the blood-brain barrier (BBB) to large macromolecular structures. To date, the most successful approach for delivering antibody therapeutics to the brain is by targeting the transferrin receptor (TfR) using anti-TfR BBB shuttles, with the 8D3 antibody being one of the most extensively studied in the field. The strategy of fine-tuning TfR binding affinity has shown promise, with previous results showing an improved brain delivery of bivalent 8D3-BBB constructs. In the current study, a fine-tuning TfR affinity strategy has been employed to improve single-chain variable fragment (scFv) 8D3 (scFv8D3) affinity mutants. Initially, in silico protein-protein docking analysis was performed to identify amino acids (AAs) likely to contribute to 8D3s TfR binding affinity. Mutating the identified AAs resulted in decreased TfR binding affinity, increased blood half-life and increased brain concentration. As monovalent BBB shuttles are seemingly superior for delivering antibodies at therapeutically relevant doses, our findings and approach may be relevant for optimizing brain delivery.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00492"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2024.e00492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Monoclonal antibody therapeutics is a massively growing field. Progress in providing monoclonal antibody therapeutics to treat brain disorders is complicated, due to the impermeability of the blood-brain barrier (BBB) to large macromolecular structures. To date, the most successful approach for delivering antibody therapeutics to the brain is by targeting the transferrin receptor (TfR) using anti-TfR BBB shuttles, with the 8D3 antibody being one of the most extensively studied in the field. The strategy of fine-tuning TfR binding affinity has shown promise, with previous results showing an improved brain delivery of bivalent 8D3-BBB constructs. In the current study, a fine-tuning TfR affinity strategy has been employed to improve single-chain variable fragment (scFv) 8D3 (scFv8D3) affinity mutants. Initially, in silico protein-protein docking analysis was performed to identify amino acids (AAs) likely to contribute to 8D3s TfR binding affinity. Mutating the identified AAs resulted in decreased TfR binding affinity, increased blood half-life and increased brain concentration. As monovalent BBB shuttles are seemingly superior for delivering antibodies at therapeutically relevant doses, our findings and approach may be relevant for optimizing brain delivery.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.