Storage stability and solution binding affinity of an Fc-fusion mimetic.

IF 3.7 3区 医学 Q2 CHEMISTRY, MEDICINAL
Sama Prikalkhoran, David Guiliano, Hanieh Khalili
{"title":"Storage stability and solution binding affinity of an Fc-fusion mimetic.","authors":"Sama Prikalkhoran, David Guiliano, Hanieh Khalili","doi":"10.1016/j.xphs.2024.11.016","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the storage stability and solution binding affinity of a novel Fc-fusion mimetic, receptor-PEG-receptor (RpR), designed to address limitations of the current therapeutic aflibercept, a gold-standard therapy for age-macular degeneration (AMD). Using di(bis-sulfone) PEG linker as a structural scaffold, the mimetic aims to improve the storage stability and binding efficacy of the Fc fusion protein. Mass photometry and size-exclusion chromatography demonstrated that RpR, even in an unformulated buffer, exhibits superior storage stability exceeding 10 months compared to aflibercept. Furthermore, microscale thermophoresis was employed to determine RpR's binding affinity to VEGF in solution, providing a more physiologically relevant assessment than traditional binding assays. These findings highlight RpR's potential as a therapeutic candidate for the treatment of AMD disease, warranting further investigation.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.11.016","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the storage stability and solution binding affinity of a novel Fc-fusion mimetic, receptor-PEG-receptor (RpR), designed to address limitations of the current therapeutic aflibercept, a gold-standard therapy for age-macular degeneration (AMD). Using di(bis-sulfone) PEG linker as a structural scaffold, the mimetic aims to improve the storage stability and binding efficacy of the Fc fusion protein. Mass photometry and size-exclusion chromatography demonstrated that RpR, even in an unformulated buffer, exhibits superior storage stability exceeding 10 months compared to aflibercept. Furthermore, microscale thermophoresis was employed to determine RpR's binding affinity to VEGF in solution, providing a more physiologically relevant assessment than traditional binding assays. These findings highlight RpR's potential as a therapeutic candidate for the treatment of AMD disease, warranting further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
13.20%
发文量
367
审稿时长
33 days
期刊介绍: The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信