{"title":"Assessment of immunogenicity and protective efficiency of multi-epitope antigen-loaded in mannan decorated PLGA nanoparticles against tuberculosis.","authors":"Yousef Amini, Mona Kabiri, Saeid Amel Jamehdar, Mojtaba Sankian, Zahra Meshkat, Sirwan Zare, Saman Soleimanpour, Hadi Farsiani, Bagher Moradi, Mohsen Tafaghodi","doi":"10.1016/j.xphs.2024.11.025","DOIUrl":null,"url":null,"abstract":"<p><p>The antigen-targeting to dendritic cells (DCs) has gained increasing attention as the potential approach for immunotherapy in recent years due to the ability of DCs to regulate innate and adaptive immunity. In the present study, the immunogenicity and protective efficiency of mannan-decorated PLGA nanoparticles (NPs) loaded with multi-epitopes mycobacterium tuberculosis antigen (HspX-Ppe44-EsxV) were evaluated as a targeted delivery system to DCs. For this purpose, PLGA nanoparticle formulations were prepared and subsequently decorated by mannan. The physicochemical properties and level of mannan incorporation, as well as encapsulation efficiency and antigen release, were assessed. The potential of formulated NPs for antigen targeting to DCs, and immunogenicity against tuberculosis (TB) were investigated using immunofluorescence assay and in-vivo experiments. Mannan incorporation enhanced the uptake of fusion-loaded PLGA by DCs. The cytokine and antibody assays demonstrated that mannosylation of NPs and BCG-primed mice boosted by mannan-PLGA could significantly elevate Th1-biased immune responses relative to the BCG and non-modified PLGA NPs. Our findings also proved that the mannosylated vaccine in the presence of CpG could evoke Th1 and Th17 responses with appropriate protective efficiency against TB in mice. This result illustrated that the active targeting of DCs by mannan-PLGA NPs could induce a proper anti-tuberculosis response, which is essential for protection against tuberculosis.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2024.11.025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The antigen-targeting to dendritic cells (DCs) has gained increasing attention as the potential approach for immunotherapy in recent years due to the ability of DCs to regulate innate and adaptive immunity. In the present study, the immunogenicity and protective efficiency of mannan-decorated PLGA nanoparticles (NPs) loaded with multi-epitopes mycobacterium tuberculosis antigen (HspX-Ppe44-EsxV) were evaluated as a targeted delivery system to DCs. For this purpose, PLGA nanoparticle formulations were prepared and subsequently decorated by mannan. The physicochemical properties and level of mannan incorporation, as well as encapsulation efficiency and antigen release, were assessed. The potential of formulated NPs for antigen targeting to DCs, and immunogenicity against tuberculosis (TB) were investigated using immunofluorescence assay and in-vivo experiments. Mannan incorporation enhanced the uptake of fusion-loaded PLGA by DCs. The cytokine and antibody assays demonstrated that mannosylation of NPs and BCG-primed mice boosted by mannan-PLGA could significantly elevate Th1-biased immune responses relative to the BCG and non-modified PLGA NPs. Our findings also proved that the mannosylated vaccine in the presence of CpG could evoke Th1 and Th17 responses with appropriate protective efficiency against TB in mice. This result illustrated that the active targeting of DCs by mannan-PLGA NPs could induce a proper anti-tuberculosis response, which is essential for protection against tuberculosis.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.