P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma.

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Magnetic resonance imaging Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI:10.1016/j.mri.2024.110293
Hong Huang, Qinghua Wu, Hongyan Qiao, Sujing Chen, Shudong Hu, Qingqing Wen, Guofeng Zhou
{"title":"P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma.","authors":"Hong Huang, Qinghua Wu, Hongyan Qiao, Sujing Chen, Shudong Hu, Qingqing Wen, Guofeng Zhou","doi":"10.1016/j.mri.2024.110293","DOIUrl":null,"url":null,"abstract":"<p><strong>Object: </strong>To develop and validate a nomogram for predicting recurrence in individuals suffering single hepatocellular carcinoma (HCC) after curative hepatectomy.</p><p><strong>Material and methods: </strong>A retrospective analysis was conducted on 189 patients with single HCC undergoing curative resection in our center were randomized into training and validation cohorts. P53 status was determined using immunohistochemistry. Clinical data, such as age, and gender were collected. MRI findings, such as tumor size, intratumoral arteries, the presence of peritumoral enhancement and intratumoral necrosis were also recorded. Nomograms were established based on the predictors selected in the training cohort, and receiver operating characteristic (ROC) curve analyses were used to compare the predictive ability among single predictors and nomogram model. The Kaplan-Meier method was used to assess the impact of each predictor and nomogram model on HCC recurrence. The results were validated in the validation cohort.</p><p><strong>Results: </strong>Multivariate Cox regression analysis showed that P53 (P < 0.001), tumor size (P = 0.009), and intratumoral artery (P = 0.026) were the independent risk factors for HCC recurrence. The nomogram model demonstrated favorable C-index of 0.740 (95 %CI:0.653-0.826) and 0.767 (95 %CI: 0.633-0.900) in the training and validation cohorts, and the areas under the curve was 0.740 and 0.752, which was better than the performance of P53 and MR factors alone. Calibration curves indicated a good agreement between observed actual outcomes and predicted values. Kaplan-Meier curves indicated that nomogram model was powerful in discrimination and clinical usefulness.</p><p><strong>Conclusions: </strong>The integrated nomogram combining P53 status and MRI findings can be a valuable prognostic tool for predicting postoperative recurrence of single HCC.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110293"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Object: To develop and validate a nomogram for predicting recurrence in individuals suffering single hepatocellular carcinoma (HCC) after curative hepatectomy.

Material and methods: A retrospective analysis was conducted on 189 patients with single HCC undergoing curative resection in our center were randomized into training and validation cohorts. P53 status was determined using immunohistochemistry. Clinical data, such as age, and gender were collected. MRI findings, such as tumor size, intratumoral arteries, the presence of peritumoral enhancement and intratumoral necrosis were also recorded. Nomograms were established based on the predictors selected in the training cohort, and receiver operating characteristic (ROC) curve analyses were used to compare the predictive ability among single predictors and nomogram model. The Kaplan-Meier method was used to assess the impact of each predictor and nomogram model on HCC recurrence. The results were validated in the validation cohort.

Results: Multivariate Cox regression analysis showed that P53 (P < 0.001), tumor size (P = 0.009), and intratumoral artery (P = 0.026) were the independent risk factors for HCC recurrence. The nomogram model demonstrated favorable C-index of 0.740 (95 %CI:0.653-0.826) and 0.767 (95 %CI: 0.633-0.900) in the training and validation cohorts, and the areas under the curve was 0.740 and 0.752, which was better than the performance of P53 and MR factors alone. Calibration curves indicated a good agreement between observed actual outcomes and predicted values. Kaplan-Meier curves indicated that nomogram model was powerful in discrimination and clinical usefulness.

Conclusions: The integrated nomogram combining P53 status and MRI findings can be a valuable prognostic tool for predicting postoperative recurrence of single HCC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信