Dan Zhang, Chao Yuan, Xuejiao An, Tingting Guo, Zengkui Lu, Jianbin Liu
{"title":"Transcriptome and metabolome revealed the effects of hypoxic environment on ovarian development of Tibetan sheep.","authors":"Dan Zhang, Chao Yuan, Xuejiao An, Tingting Guo, Zengkui Lu, Jianbin Liu","doi":"10.1016/j.ygeno.2024.110973","DOIUrl":null,"url":null,"abstract":"<p><p>Many studies on the adaptability of Tibetan sheep to hypoxia have been reported, but little attention has been paid to the reproduction of Tibetan sheep living at an altitude of more than 4000 m. In this study, the ovaries of Alpine Merino sheep (AM) living in middle-high altitude areas (2500 m) and the ovaries of Gangba Tibetan sheep (GB) and Huoba Tibetan sheep (HB) living in ultra-high altitude areas (4400 m or more) were collected. Through morphological, transcriptomics and metabolomics, the effects of ultra-high altitude areas on Tibetan sheep ovarian development and the molecular mechanism of sheep's adaptability to ultra-high altitude environment were explored. The results showed that the number of granulosa cells in AM was significantly higher than that in GB and HB. The transcriptome revealed several genes related to follicular development, such as DAPL1, IGFBP1, C5, GPR12, STRA6, BMPER, etc., which were mainly enriched in related pathways such as cell growth and development. Through metabolomics analysis, it was found that the differential metabolites between the three groups of sheep were mainly lipids and lipid-like small molecules, such as Glycerol 3-Phosphate, PC (16: 0 / 18: 3 (9Z, 12Z, 15Z)), mainly enriched in lipid metabolism and other related pathways. The results of combined analysis showed that Tryptophan metabolism and Steroid hormone biosynthesis may have a significant effect on Tibetan sheep follicular development. Some genes (including HSD17B7, CYP11A1, CYP19, HSD3B1, CYP17, etc.) and some metabolites (including Cortisone, 2-Methoxyestrone, etc.) are enriched in these pathways, regulating ovarian and follicular development by affecting estrogen, progesterone, etc.. The results further revealed the molecular mechanism of Tibetan sheep to adapt to the ultra-high altitude environment and maintain normal ovarian and follicular development through the regulation of genes and metabolites.</p>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":" ","pages":"110973"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ygeno.2024.110973","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many studies on the adaptability of Tibetan sheep to hypoxia have been reported, but little attention has been paid to the reproduction of Tibetan sheep living at an altitude of more than 4000 m. In this study, the ovaries of Alpine Merino sheep (AM) living in middle-high altitude areas (2500 m) and the ovaries of Gangba Tibetan sheep (GB) and Huoba Tibetan sheep (HB) living in ultra-high altitude areas (4400 m or more) were collected. Through morphological, transcriptomics and metabolomics, the effects of ultra-high altitude areas on Tibetan sheep ovarian development and the molecular mechanism of sheep's adaptability to ultra-high altitude environment were explored. The results showed that the number of granulosa cells in AM was significantly higher than that in GB and HB. The transcriptome revealed several genes related to follicular development, such as DAPL1, IGFBP1, C5, GPR12, STRA6, BMPER, etc., which were mainly enriched in related pathways such as cell growth and development. Through metabolomics analysis, it was found that the differential metabolites between the three groups of sheep were mainly lipids and lipid-like small molecules, such as Glycerol 3-Phosphate, PC (16: 0 / 18: 3 (9Z, 12Z, 15Z)), mainly enriched in lipid metabolism and other related pathways. The results of combined analysis showed that Tryptophan metabolism and Steroid hormone biosynthesis may have a significant effect on Tibetan sheep follicular development. Some genes (including HSD17B7, CYP11A1, CYP19, HSD3B1, CYP17, etc.) and some metabolites (including Cortisone, 2-Methoxyestrone, etc.) are enriched in these pathways, regulating ovarian and follicular development by affecting estrogen, progesterone, etc.. The results further revealed the molecular mechanism of Tibetan sheep to adapt to the ultra-high altitude environment and maintain normal ovarian and follicular development through the regulation of genes and metabolites.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.