PaveDistress: A comprehensive dataset of pavement distresses detection.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-11-05 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111111
Zhen Liu, Wenxiu Wu, Xingyu Gu, Bingyan Cui
{"title":"PaveDistress: A comprehensive dataset of pavement distresses detection.","authors":"Zhen Liu, Wenxiu Wu, Xingyu Gu, Bingyan Cui","doi":"10.1016/j.dib.2024.111111","DOIUrl":null,"url":null,"abstract":"<p><p>The PaveDistress dataset contains high-resolution images of road surface distresses, including cracks, repairs, potholes, and background images without defects. The data were collected using a specialized pavement inspection vehicle along the S315 highway in China. The vehicle was equipped with a Basler raL2048-80km line scan camera and infrared laser-assisted lighting, capturing images at 1mm intervals with a resolution of 3854 × 2065 pixels. The images were taken every 2 meters across various lighting conditions, including daylight, dusk, and in challenging environments such as tunnels and cloudy weather. The dataset is organized into distinct categories, covering transverse cracks, longitudinal cracks, map cracks, and more, enabling detailed categorization of pavement distresses. Each image represents a real-world road coverage area of 3.9m × 2.1m, allowing for accurate measurements of defect dimensions. This dataset supports the development of deep learning models for non-destructive detection of road defects, providing valuable resources for civil engineering research and practical applications in road maintenance systems. The dataset can be reused for tasks such as image classification, object detection, and segmentation, enabling researchers to create advanced machine learning models for road distress detection and assessment. By providing high-quality, diverse images, the PaveDistress dataset offers significant potential for research in automated pavement condition monitoring and management systems.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111111"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The PaveDistress dataset contains high-resolution images of road surface distresses, including cracks, repairs, potholes, and background images without defects. The data were collected using a specialized pavement inspection vehicle along the S315 highway in China. The vehicle was equipped with a Basler raL2048-80km line scan camera and infrared laser-assisted lighting, capturing images at 1mm intervals with a resolution of 3854 × 2065 pixels. The images were taken every 2 meters across various lighting conditions, including daylight, dusk, and in challenging environments such as tunnels and cloudy weather. The dataset is organized into distinct categories, covering transverse cracks, longitudinal cracks, map cracks, and more, enabling detailed categorization of pavement distresses. Each image represents a real-world road coverage area of 3.9m × 2.1m, allowing for accurate measurements of defect dimensions. This dataset supports the development of deep learning models for non-destructive detection of road defects, providing valuable resources for civil engineering research and practical applications in road maintenance systems. The dataset can be reused for tasks such as image classification, object detection, and segmentation, enabling researchers to create advanced machine learning models for road distress detection and assessment. By providing high-quality, diverse images, the PaveDistress dataset offers significant potential for research in automated pavement condition monitoring and management systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信