Accelerating virtual patient generation with a Bayesian optimization and machine learning surrogate model.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Hiroaki Iwata, Ryuta Saito
{"title":"Accelerating virtual patient generation with a Bayesian optimization and machine learning surrogate model.","authors":"Hiroaki Iwata, Ryuta Saito","doi":"10.1002/psp4.13288","DOIUrl":null,"url":null,"abstract":"<p><p>The pharmaceutical industry has increasingly adopted model-informed drug discovery and development (MID3) to enhance productivity in drug discovery and development. Quantitative systems pharmacology (QSP), which integrates drug action mechanisms and disease complexities to predict clinical endpoints and biomarkers is central to MID3. QSP modeling has proven successful in metabolic and cardiovascular diseases and has expanded into oncology, immunotherapy, and infectious diseases. Despite its benefits, QSP model validation through clinical trial simulations using virtual patients (VPs) is challenging because of parameter variability and high computational costs. To address these challenges, this study proposes a hybrid method that combines Bayesian optimization with machine learning for efficient parameter screening. Our approach achieved an acceptance rate of 27.5% in QSP simulations, which is in sharp contrast with the 2.5% rate of conventional random search methods, indicating more than 10-fold improvement in efficiency. By facilitating faster and more diverse VPs generation, this method promises to advance clinical trial simulations and accelerate drug development in pharmaceutical research.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The pharmaceutical industry has increasingly adopted model-informed drug discovery and development (MID3) to enhance productivity in drug discovery and development. Quantitative systems pharmacology (QSP), which integrates drug action mechanisms and disease complexities to predict clinical endpoints and biomarkers is central to MID3. QSP modeling has proven successful in metabolic and cardiovascular diseases and has expanded into oncology, immunotherapy, and infectious diseases. Despite its benefits, QSP model validation through clinical trial simulations using virtual patients (VPs) is challenging because of parameter variability and high computational costs. To address these challenges, this study proposes a hybrid method that combines Bayesian optimization with machine learning for efficient parameter screening. Our approach achieved an acceptance rate of 27.5% in QSP simulations, which is in sharp contrast with the 2.5% rate of conventional random search methods, indicating more than 10-fold improvement in efficiency. By facilitating faster and more diverse VPs generation, this method promises to advance clinical trial simulations and accelerate drug development in pharmaceutical research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信