Pheno-Ranker: a toolkit for comparison of phenotypic data stored in GA4GH standards and beyond.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Ivo C Leist, María Rivas-Torrubia, Marta E Alarcón-Riquelme, Guillermo Barturen, Precisesads Clinical Consortium, Ivo G Gut, Manuel Rueda
{"title":"Pheno-Ranker: a toolkit for comparison of phenotypic data stored in GA4GH standards and beyond.","authors":"Ivo C Leist, María Rivas-Torrubia, Marta E Alarcón-Riquelme, Guillermo Barturen, Precisesads Clinical Consortium, Ivo G Gut, Manuel Rueda","doi":"10.1186/s12859-024-05993-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phenotypic data comparison is essential for disease association studies, patient stratification, and genotype-phenotype correlation analysis. To support these efforts, the Global Alliance for Genomics and Health (GA4GH) established Phenopackets v2 and Beacon v2 standards for storing, sharing, and discovering genomic and phenotypic data. These standards provide a consistent framework for organizing biological data, simplifying their transformation into computer-friendly formats. However, matching participants using GA4GH-based formats remains challenging, as current methods are not fully compatible, limiting their effectiveness.</p><p><strong>Results: </strong>Here, we introduce Pheno-Ranker, an open-source software toolkit for individual-level comparison of phenotypic data. As input, it accepts JSON/YAML data exchange formats from Beacon v2 and Phenopackets v2 data models, as well as any data structure encoded in JSON, YAML, or CSV formats. Internally, the hierarchical data structure is flattened to one dimension and then transformed through one-hot encoding. This allows for efficient pairwise (all-to-all) comparisons within cohorts or for matching of a patient's profile in cohorts. Users have the flexibility to refine their comparisons by including or excluding terms, applying weights to variables, and obtaining statistical significance through Z-scores and p-values. The output consists of text files, which can be further analyzed using unsupervised learning techniques, such as clustering or multidimensional scaling (MDS), and with graph analytics. Pheno-Ranker's performance has been validated with simulated and synthetic data, showing its accuracy, robustness, and efficiency across various health data scenarios. A real data use case from the PRECISESADS study highlights its practical utility in clinical research.</p><p><strong>Conclusions: </strong>Pheno-Ranker is a user-friendly, lightweight software for semantic similarity analysis of phenotypic data in Beacon v2 and Phenopackets v2 formats, extendable to other data types. It enables the comparison of a wide range of variables beyond HPO or OMIM terms while preserving full context. The software is designed as a command-line tool with additional utilities for CSV import, data simulation, summary statistics plotting, and QR code generation. For interactive analysis, it also includes a web-based user interface built with R Shiny. Links to the online documentation, including a Google Colab tutorial, and the tool's source code are available on the project home page: https://github.com/CNAG-Biomedical-Informatics/pheno-ranker .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"373"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05993-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Phenotypic data comparison is essential for disease association studies, patient stratification, and genotype-phenotype correlation analysis. To support these efforts, the Global Alliance for Genomics and Health (GA4GH) established Phenopackets v2 and Beacon v2 standards for storing, sharing, and discovering genomic and phenotypic data. These standards provide a consistent framework for organizing biological data, simplifying their transformation into computer-friendly formats. However, matching participants using GA4GH-based formats remains challenging, as current methods are not fully compatible, limiting their effectiveness.

Results: Here, we introduce Pheno-Ranker, an open-source software toolkit for individual-level comparison of phenotypic data. As input, it accepts JSON/YAML data exchange formats from Beacon v2 and Phenopackets v2 data models, as well as any data structure encoded in JSON, YAML, or CSV formats. Internally, the hierarchical data structure is flattened to one dimension and then transformed through one-hot encoding. This allows for efficient pairwise (all-to-all) comparisons within cohorts or for matching of a patient's profile in cohorts. Users have the flexibility to refine their comparisons by including or excluding terms, applying weights to variables, and obtaining statistical significance through Z-scores and p-values. The output consists of text files, which can be further analyzed using unsupervised learning techniques, such as clustering or multidimensional scaling (MDS), and with graph analytics. Pheno-Ranker's performance has been validated with simulated and synthetic data, showing its accuracy, robustness, and efficiency across various health data scenarios. A real data use case from the PRECISESADS study highlights its practical utility in clinical research.

Conclusions: Pheno-Ranker is a user-friendly, lightweight software for semantic similarity analysis of phenotypic data in Beacon v2 and Phenopackets v2 formats, extendable to other data types. It enables the comparison of a wide range of variables beyond HPO or OMIM terms while preserving full context. The software is designed as a command-line tool with additional utilities for CSV import, data simulation, summary statistics plotting, and QR code generation. For interactive analysis, it also includes a web-based user interface built with R Shiny. Links to the online documentation, including a Google Colab tutorial, and the tool's source code are available on the project home page: https://github.com/CNAG-Biomedical-Informatics/pheno-ranker .

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信