Basin of attraction organization in infinite-dimensional delayed systems: A stochastic basin entropy approach.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0234028
Juan Pedro Tarigo, Cecilia Stari, Arturo C Martí
{"title":"Basin of attraction organization in infinite-dimensional delayed systems: A stochastic basin entropy approach.","authors":"Juan Pedro Tarigo, Cecilia Stari, Arturo C Martí","doi":"10.1063/5.0234028","DOIUrl":null,"url":null,"abstract":"<p><p>The Mackey-Glass system is a paradigmatic example of a delayed model whose dynamics is particularly complex due to, among other factors, its multistability involving the coexistence of many periodic and chaotic attractors. The prediction of the long-term dynamics is especially challenging in these systems, where the dimensionality is infinite and initial conditions must be specified as a function in a finite time interval. In this paper, we extend the recently proposed basin entropy to randomly sample arbitrarily high-dimensional spaces. By complementing this stochastic approach with the basin fraction of the attractors in the initial conditions space, we can understand the structure of the basins of attraction and how they are intermixed. The results reported here allow us to quantify the predictability giving us an idea about the long-term evolution of trajectories as a function of the initial conditions. The tools employed can result very useful in the study of complex systems of infinite dimension.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0234028","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Mackey-Glass system is a paradigmatic example of a delayed model whose dynamics is particularly complex due to, among other factors, its multistability involving the coexistence of many periodic and chaotic attractors. The prediction of the long-term dynamics is especially challenging in these systems, where the dimensionality is infinite and initial conditions must be specified as a function in a finite time interval. In this paper, we extend the recently proposed basin entropy to randomly sample arbitrarily high-dimensional spaces. By complementing this stochastic approach with the basin fraction of the attractors in the initial conditions space, we can understand the structure of the basins of attraction and how they are intermixed. The results reported here allow us to quantify the predictability giving us an idea about the long-term evolution of trajectories as a function of the initial conditions. The tools employed can result very useful in the study of complex systems of infinite dimension.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信