Autocorrelation maps for optimal setting in cardiac resynchronization therapy.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anna Přibilová, Jana Švehlíková, Michal Šašov, Ján Zelinka, Beáta Ondrušová, Róbert Hatala, Milan Tyšler
{"title":"Autocorrelation maps for optimal setting in cardiac resynchronization therapy.","authors":"Anna Přibilová, Jana Švehlíková, Michal Šašov, Ján Zelinka, Beáta Ondrušová, Róbert Hatala, Milan Tyšler","doi":"10.1016/j.cmpb.2024.108519","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Patients with chronic heart failure are treated with implanted devices artificially stimulating the ventricular myocardium to support the ventricular activation propagation dynamics. The criterion for stimulation/pacing timing is a shortening of the QRS duration in the ECG signal. The study suggests additional ECG parameters that could be helpful in cardiac resynchronization therapy (CRT) device pacing settings.</p><p><strong>Methods: </strong>This issue was approached by computing and evaluating autocorrelation maps derived from body surface potential maps during the QRS complex. The autocorrelation maps were calculated from the body surface potential maps of seventeen patients, fourteen of whom were diagnosed with the left bundle branch block (LBBB) and three with the right bundle branch block (RBBB). Eleven of the LBBB patients were responders, and all three RBBB patients and three LBBB patient were non-responders. The body surface potential maps were measured during their spontaneous heart rhythm and optimal CRT setting. The patients' autocorrelation maps were compared with the autocorrelation maps of a control group of 33 healthy persons using two-sample Kolmogorov-Smirnov and Wilcoxon rank-sum statistical tests.</p><p><strong>Results: </strong>The autocorrelation maps from spontaneous rhythm were significantly different (p < 0.00008) in healthy and LBBB groups, which was shown on 19 parameters extracted from the autocorrelation maps by both the statistical tests of equality. In the optimal CRT setting in the LBBB responders, four of the studied parameters (Shannon entropy of the histogram of the autocorrelation map's values, and mean, standard deviation, and geometrical mean of the autocorrelation map's positive values) were not significantly different from the parameters of the healthy subjects (p > 0.19).</p><p><strong>Conclusions: </strong>Selected parameters of autocorrelation maps can be used as additional parameters for optimal CRT pacing settings, leading to patients' positive responses to the treatment.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108519"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108519","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Patients with chronic heart failure are treated with implanted devices artificially stimulating the ventricular myocardium to support the ventricular activation propagation dynamics. The criterion for stimulation/pacing timing is a shortening of the QRS duration in the ECG signal. The study suggests additional ECG parameters that could be helpful in cardiac resynchronization therapy (CRT) device pacing settings.

Methods: This issue was approached by computing and evaluating autocorrelation maps derived from body surface potential maps during the QRS complex. The autocorrelation maps were calculated from the body surface potential maps of seventeen patients, fourteen of whom were diagnosed with the left bundle branch block (LBBB) and three with the right bundle branch block (RBBB). Eleven of the LBBB patients were responders, and all three RBBB patients and three LBBB patient were non-responders. The body surface potential maps were measured during their spontaneous heart rhythm and optimal CRT setting. The patients' autocorrelation maps were compared with the autocorrelation maps of a control group of 33 healthy persons using two-sample Kolmogorov-Smirnov and Wilcoxon rank-sum statistical tests.

Results: The autocorrelation maps from spontaneous rhythm were significantly different (p < 0.00008) in healthy and LBBB groups, which was shown on 19 parameters extracted from the autocorrelation maps by both the statistical tests of equality. In the optimal CRT setting in the LBBB responders, four of the studied parameters (Shannon entropy of the histogram of the autocorrelation map's values, and mean, standard deviation, and geometrical mean of the autocorrelation map's positive values) were not significantly different from the parameters of the healthy subjects (p > 0.19).

Conclusions: Selected parameters of autocorrelation maps can be used as additional parameters for optimal CRT pacing settings, leading to patients' positive responses to the treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信