Simulating flood risk in Tampa Bay using a machine learning driven approach

Hemal Dey, Md Munjurul Haque, Wanyun Shao, Matthew VanDyke, Feng Hao
{"title":"Simulating flood risk in Tampa Bay using a machine learning driven approach","authors":"Hemal Dey, Md Munjurul Haque, Wanyun Shao, Matthew VanDyke, Feng Hao","doi":"10.1038/s44304-024-00045-4","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) models can simulate flood risk by identifying critical non-linear relationships between flood damage locations and flood risk factors (FRFs). To explore it, Tampa Bay, Florida, is selected as a test site. The study’s goal is to simulate flood risk and identify dominant FRFs using historical flood damage data as target variable, with 16 FRFs as predictor variables. Five different ML models such as decision tree (DT), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and random forest (RF) were adopted. RF classifies 2.42% of Tampa Bay as very high risk and 2.54% as high risk, while XGBoost classifies 3.85% as very high risk and 1.11% as high risk. Moreover, the communities reside at low altitudes and near the waterbodies, with dense man-made infrastructure, are at high flood risk. This study introduces a comprehensive framework for flood risk assessment and helps policymakers mitigate flood risk.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-16"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00045-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00045-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning (ML) models can simulate flood risk by identifying critical non-linear relationships between flood damage locations and flood risk factors (FRFs). To explore it, Tampa Bay, Florida, is selected as a test site. The study’s goal is to simulate flood risk and identify dominant FRFs using historical flood damage data as target variable, with 16 FRFs as predictor variables. Five different ML models such as decision tree (DT), support vector machine (SVM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and random forest (RF) were adopted. RF classifies 2.42% of Tampa Bay as very high risk and 2.54% as high risk, while XGBoost classifies 3.85% as very high risk and 1.11% as high risk. Moreover, the communities reside at low altitudes and near the waterbodies, with dense man-made infrastructure, are at high flood risk. This study introduces a comprehensive framework for flood risk assessment and helps policymakers mitigate flood risk.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信