Chol-Min Kim, Nam-Chol Kim, Myong-Chol Ko, Ju-Song Ryom, Su-Ryon Ri, Jong-Ju Ri
{"title":"Single-qubit phase gates with two quantum dots embedded in T-type plasmonic waveguide","authors":"Chol-Min Kim, Nam-Chol Kim, Myong-Chol Ko, Ju-Song Ryom, Su-Ryon Ri, Jong-Ju Ri","doi":"10.1007/s11128-024-04592-7","DOIUrl":null,"url":null,"abstract":"<div><p>We have proposed several single-qubit phase gates with two quantum dots (QDs) embedded in a T-type plasmonic waveguides (PWs), wherein binary qubits are encoded by frequency of photons. Our results reveal that in such a hybrid system, an arbitrary single-qubit phase shift gates can be achieved and the gate performance could be controlled by adjusting spacing distance between two QDs and frequency detuning in a proper manner. We show that the phase of outstate can be adequately adjusted by distance between two QDs and the detuning could cause a phase shift. We investigated schemes theoretically via the real-space approach and estimated the feasibilities of them by evaluating fidelities for several parameters. Under the present technology and high fidelities, the proposed one could be utilized for quantum computation and quantum information processing.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04592-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have proposed several single-qubit phase gates with two quantum dots (QDs) embedded in a T-type plasmonic waveguides (PWs), wherein binary qubits are encoded by frequency of photons. Our results reveal that in such a hybrid system, an arbitrary single-qubit phase shift gates can be achieved and the gate performance could be controlled by adjusting spacing distance between two QDs and frequency detuning in a proper manner. We show that the phase of outstate can be adequately adjusted by distance between two QDs and the detuning could cause a phase shift. We investigated schemes theoretically via the real-space approach and estimated the feasibilities of them by evaluating fidelities for several parameters. Under the present technology and high fidelities, the proposed one could be utilized for quantum computation and quantum information processing.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.