Generalized principal logarithms and Riemannian properties of a class of subgroups of \(\mathbf {U_n}\) endowed with the Frobenius bi-invariant metric

Q2 Mathematics
Donato Pertici, Alberto Dolcetti
{"title":"Generalized principal logarithms and Riemannian properties of a class of subgroups of \\(\\mathbf {U_n}\\) endowed with the Frobenius bi-invariant metric","authors":"Donato Pertici,&nbsp;Alberto Dolcetti","doi":"10.1007/s11565-024-00561-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the geometric-differential properties of a wide class of closed subgroups of <span>\\(U_n\\)</span> endowed with a natural bi-invariant metric. For each of these groups, we explicitly express the distance function, the diameter, and, above all, we parametrize the set of minimizing geodesic segments with arbitrary endpoints <span>\\(P_0\\)</span> and <span>\\(P_1\\)</span> by means of the set of generalized principal logarithms of <span>\\(P_0^*P_1\\)</span> in the Lie algebra of the group. We prove that this last set is a non-empty disjoint union of a finite number of compact submanifolds of <span>\\(\\mathfrak {u}_n\\)</span> diffeomorphic to suitable (and explicitly determined) homogeneous spaces.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00561-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study the geometric-differential properties of a wide class of closed subgroups of \(U_n\) endowed with a natural bi-invariant metric. For each of these groups, we explicitly express the distance function, the diameter, and, above all, we parametrize the set of minimizing geodesic segments with arbitrary endpoints \(P_0\) and \(P_1\) by means of the set of generalized principal logarithms of \(P_0^*P_1\) in the Lie algebra of the group. We prove that this last set is a non-empty disjoint union of a finite number of compact submanifolds of \(\mathfrak {u}_n\) diffeomorphic to suitable (and explicitly determined) homogeneous spaces.

一类具有Frobenius双不变度量的\(\mathbf {U_n}\)子群的广义主对数和黎曼性质
研究了具有自然双不变度量的\(U_n\)的一大闭子群的几何微分性质。对于这些群中的每一个,我们显式地表达了距离函数,直径,最重要的是,我们通过群的李代数中\(P_0^*P_1\)的广义主对数集来参数化具有任意端点\(P_0\)和\(P_1\)的最小测地线段集。证明了这最后一个集合是有限个紧子流形\(\mathfrak {u}_n\)微同构于合适的(明确确定的)齐次空间的非空不相交并。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信