Static perfect fluid spacetimes on f-Kenmotsu 3-manifolds

Q2 Mathematics
Uday Chand De, Arpan Sardar
{"title":"Static perfect fluid spacetimes on f-Kenmotsu 3-manifolds","authors":"Uday Chand De,&nbsp;Arpan Sardar","doi":"10.1007/s11565-024-00576-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present article deals with static perfect fluid spacetimes on <i>f</i>-Kenmotsu 3-manifolds. At first, we demonstrate if a 3-dimensional <i>f</i>-Kenmotsu manifold with constant scalar curvature as the spatial factor of a static perfect fluid spacetime, then either it is a space of constant sectional curvature or <span>\\(grad\\, \\psi \\)</span> is pointwise collinear with <span>\\(\\xi \\)</span> and the warping function of the static perfect fluid spacetime is given by <span>\\(\\psi = k_1 t + k_2\\)</span>, <span>\\(k_1 \\ne 0\\)</span>. As a result, we establish that if a cosymplectic manifold of dimension three with constant scalar curvature is the spatial factor of a static perfect fluid spacetime, then either it is flat or, the manifold becomes a space of constant sectional curvature. Next, we show that under certain restrictions if a 3-dimensional <i>f</i>-Kenmotsu manifold is the spatial factor of a static perfect fluid spacetime, then either the manifold is a space of constant sectional curvature or, the manifold is locally isometric to either the flat Euclidean space <span>\\(\\mathcal {R}^3\\)</span> or the Riemannian product <span>\\(\\mathcal {R}\\times M^2(c)\\)</span>, where <span>\\(M^2(c)\\)</span> represents a Kahler surface with constant curvature <span>\\(c\\ne 0\\)</span>, provided <span>\\(\\xi \\psi =0\\)</span> and <span>\\(\\xi \\tilde{f} =0\\)</span>. Lastly, we have cited an example of an <i>f</i>-Kenmotsu manifold to validate our result.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00576-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The present article deals with static perfect fluid spacetimes on f-Kenmotsu 3-manifolds. At first, we demonstrate if a 3-dimensional f-Kenmotsu manifold with constant scalar curvature as the spatial factor of a static perfect fluid spacetime, then either it is a space of constant sectional curvature or \(grad\, \psi \) is pointwise collinear with \(\xi \) and the warping function of the static perfect fluid spacetime is given by \(\psi = k_1 t + k_2\), \(k_1 \ne 0\). As a result, we establish that if a cosymplectic manifold of dimension three with constant scalar curvature is the spatial factor of a static perfect fluid spacetime, then either it is flat or, the manifold becomes a space of constant sectional curvature. Next, we show that under certain restrictions if a 3-dimensional f-Kenmotsu manifold is the spatial factor of a static perfect fluid spacetime, then either the manifold is a space of constant sectional curvature or, the manifold is locally isometric to either the flat Euclidean space \(\mathcal {R}^3\) or the Riemannian product \(\mathcal {R}\times M^2(c)\), where \(M^2(c)\) represents a Kahler surface with constant curvature \(c\ne 0\), provided \(\xi \psi =0\) and \(\xi \tilde{f} =0\). Lastly, we have cited an example of an f-Kenmotsu manifold to validate our result.

f-Kenmotsu 3流形上的静态完美流体时空
本文研究了f- kenmots3 -流形上的静态完美流体时空。首先,我们证明了一个具有恒定标量曲率的三维f-Kenmotsu流形作为静态完美流体时空的空间因子,那么它要么是一个具有恒定截面曲率的空间,要么\(grad\, \psi \)与\(\xi \)点向共线,并给出了静态完美流体时空的翘曲函数\(\psi = k_1 t + k_2\), \(k_1 \ne 0\)。结果表明,如果具有恒定标量曲率的三维余辛流形是静态完美流体时空的空间因子,那么该流形要么是平坦的,要么是截面曲率恒定的空间。接下来,我们证明在一定的限制下,如果三维f-Kenmotsu流形是静态完美流体时空的空间因子,那么流形要么是一个恒定截面曲率的空间,要么流形局部与平坦欧几里德空间\(\mathcal {R}^3\)或黎曼积\(\mathcal {R}\times M^2(c)\)等长,其中\(M^2(c)\)表示具有恒定曲率的Kahler曲面\(c\ne 0\),提供\(\xi \psi =0\)和\(\xi \tilde{f} =0\)。最后,我们引用了一个f-Kenmotsu流形的例子来验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信