Efficient Coordination of Federated Learning and Inference Offloading at the Edge: A Proactive Optimization Paradigm

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ke Luo;Kongyange Zhao;Tao Ouyang;Xiaoxi Zhang;Zhi Zhou;Hao Wang;Xu Chen
{"title":"Efficient Coordination of Federated Learning and Inference Offloading at the Edge: A Proactive Optimization Paradigm","authors":"Ke Luo;Kongyange Zhao;Tao Ouyang;Xiaoxi Zhang;Zhi Zhou;Hao Wang;Xu Chen","doi":"10.1109/TMC.2024.3466844","DOIUrl":null,"url":null,"abstract":"Benefiting from hardware upgrades and deep learning techniques, more and more end devices can independently support a variety of intelligent applications. Further powered by edge computing technologies, the end-edge collaboration paradigm becomes one mainstream approach for achieving advanced edge intelligence (EI). To fully exploit the system resources, it is desirable to coordinate diverse EI services efficiently. Thus, we present a novel framework to jointly optimize the cost-performance trade-off for two distinct but typical EI services, where end devices simultaneously perform federated learning (FL) model training and conduct model inference with the assistance of edge offloading. However, balancing the long-term cost-performance trade-off is highly non-trivial, especially in the absence of knowledge of future system dynamics. Moreover, the capacity heterogeneity further increases the difficulty of service coordination among resource-limited end devices. To overcome these challenges, we first analyze the optimality of inference offloading decisions with and without FL model training and quantify their mutual effects due to local resource contention. By incorporating the loss estimation of FL training model, we then propose a novel proactive policy with theoretical guarantees, which proactively controls the stopping of FL training procedure to balance well the trade-offs between FL model performance and resource costs while fulfilling the inference performance requirements. Extensive results show the efficiency and robustness of our proposed algorithm for EI service coordination in dynamic end-edge collaboration scenarios.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 1","pages":"407-421"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10691652/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Benefiting from hardware upgrades and deep learning techniques, more and more end devices can independently support a variety of intelligent applications. Further powered by edge computing technologies, the end-edge collaboration paradigm becomes one mainstream approach for achieving advanced edge intelligence (EI). To fully exploit the system resources, it is desirable to coordinate diverse EI services efficiently. Thus, we present a novel framework to jointly optimize the cost-performance trade-off for two distinct but typical EI services, where end devices simultaneously perform federated learning (FL) model training and conduct model inference with the assistance of edge offloading. However, balancing the long-term cost-performance trade-off is highly non-trivial, especially in the absence of knowledge of future system dynamics. Moreover, the capacity heterogeneity further increases the difficulty of service coordination among resource-limited end devices. To overcome these challenges, we first analyze the optimality of inference offloading decisions with and without FL model training and quantify their mutual effects due to local resource contention. By incorporating the loss estimation of FL training model, we then propose a novel proactive policy with theoretical guarantees, which proactively controls the stopping of FL training procedure to balance well the trade-offs between FL model performance and resource costs while fulfilling the inference performance requirements. Extensive results show the efficiency and robustness of our proposed algorithm for EI service coordination in dynamic end-edge collaboration scenarios.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信