QoS-Aware, Cost-Efficient Scheduling for Data-Intensive DAGs in Multi-Tier Computing Environment

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Paridhika Kayal;Alberto Leon-Garcia
{"title":"QoS-Aware, Cost-Efficient Scheduling for Data-Intensive DAGs in Multi-Tier Computing Environment","authors":"Paridhika Kayal;Alberto Leon-Garcia","doi":"10.1109/TCC.2024.3468913","DOIUrl":null,"url":null,"abstract":"In today’s scientific landscape, Directed Acyclic Graphs (DAGs) are pivotal for representing task dependencies in data-intensive applications. Traditionally, two dominant bottom-up DAG scheduling approaches exist: one overlooks communication contention and the other fails to exploit parallelization for improving latency. This study distinguishes itself by advocating a top-down approach prioritizing latency or cost optimization in multi-tier environments to fulfill QoS and SLA requirements. Our strategy effectively mitigates bandwidth contention and facilitates parallel executions, leading to substantial completion time reductions. Our findings suggest that myopic knowledge-based scheduling, emphasizing latency or cost minimization, can yield benefits comparable to its look-ahead counterparts. Through latency-efficient and cost-efficient topological sorting, our \n<italic>wDAGSplit</i>\n strategy introduces a two-stage partitioning and scheduling approach. Its simplicity and adaptability extend its usability to DAGs of any scale. Evaluated on over 100,000 real-world DAG applications, \n<italic>wDAGSplit</i>\n demonstrates latency enhancements of up to 80x compared to Edge-only scenarios, 15x to Near-Edge-only, and 6x to Cloud-only. In terms of cost, our approach achieves enhancements of up to 60x compared to Edge-only scenarios, 250x to NE-only, and 70x to Cloud-only. Moreover, for DAGs with 50 tasks, we achieve 5x reduced latency compared to previous approaches, along with a complexity reduction of up to 24 times.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 4","pages":"1314-1327"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10695128/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In today’s scientific landscape, Directed Acyclic Graphs (DAGs) are pivotal for representing task dependencies in data-intensive applications. Traditionally, two dominant bottom-up DAG scheduling approaches exist: one overlooks communication contention and the other fails to exploit parallelization for improving latency. This study distinguishes itself by advocating a top-down approach prioritizing latency or cost optimization in multi-tier environments to fulfill QoS and SLA requirements. Our strategy effectively mitigates bandwidth contention and facilitates parallel executions, leading to substantial completion time reductions. Our findings suggest that myopic knowledge-based scheduling, emphasizing latency or cost minimization, can yield benefits comparable to its look-ahead counterparts. Through latency-efficient and cost-efficient topological sorting, our wDAGSplit strategy introduces a two-stage partitioning and scheduling approach. Its simplicity and adaptability extend its usability to DAGs of any scale. Evaluated on over 100,000 real-world DAG applications, wDAGSplit demonstrates latency enhancements of up to 80x compared to Edge-only scenarios, 15x to Near-Edge-only, and 6x to Cloud-only. In terms of cost, our approach achieves enhancements of up to 60x compared to Edge-only scenarios, 250x to NE-only, and 70x to Cloud-only. Moreover, for DAGs with 50 tasks, we achieve 5x reduced latency compared to previous approaches, along with a complexity reduction of up to 24 times.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信