{"title":"Mathematical model of a rectangular double negative meta-structure for 5G applications","authors":"M. J. Alam;S. I. Latif","doi":"10.1029/2024RS008036","DOIUrl":null,"url":null,"abstract":"This article introduces the mathematical formulation of a proven rectangular double negative (DNZ) metamaterial (MTM) structure using a lumped element circuit model in terms of RLC components for millimeter-wave (mmWave) 28 GHz applications. The structure is developed on a 0.254 mm-thick substrate material: Rogers RT/duroid 5880 with an area of 8.7 mm\n<sup>2</sup>\n. The model accounts for different losses inherent in the system; a series resistance to take into account the losses in the conductor and a shunt resistance to describe the losses in the dielectric substrate, addressing the finite conductivity of conducting materials, the finite resistivity of the dielectric material, and the presence of a dielectric substrate with metallic rings on top. By incorporating these factors, it is possible to precisely predict the resonance frequency associated with this specific structure, however limits the formulation from being applied to other shapes. Numerical validation demonstrates a good agreement with analytical predictions, affirming the model's reliability. The study provides a robust analytical foundation and numerical validation for the double negative metamaterial unit cell, advancing the mmWave 5G wireless technology field.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 11","pages":"1-8"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778179/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article introduces the mathematical formulation of a proven rectangular double negative (DNZ) metamaterial (MTM) structure using a lumped element circuit model in terms of RLC components for millimeter-wave (mmWave) 28 GHz applications. The structure is developed on a 0.254 mm-thick substrate material: Rogers RT/duroid 5880 with an area of 8.7 mm
2
. The model accounts for different losses inherent in the system; a series resistance to take into account the losses in the conductor and a shunt resistance to describe the losses in the dielectric substrate, addressing the finite conductivity of conducting materials, the finite resistivity of the dielectric material, and the presence of a dielectric substrate with metallic rings on top. By incorporating these factors, it is possible to precisely predict the resonance frequency associated with this specific structure, however limits the formulation from being applied to other shapes. Numerical validation demonstrates a good agreement with analytical predictions, affirming the model's reliability. The study provides a robust analytical foundation and numerical validation for the double negative metamaterial unit cell, advancing the mmWave 5G wireless technology field.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.