Assessment of DFT Functionals for Predicting the Magnetic Exchange Coupling Constants of Nonalternant Hydrocarbon Diradicals: The Role of Hartree–Fock Exchange

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Suranjan Shil
{"title":"Assessment of DFT Functionals for Predicting the Magnetic Exchange Coupling Constants of Nonalternant Hydrocarbon Diradicals: The Role of Hartree–Fock Exchange","authors":"Suranjan Shil","doi":"10.1002/jcc.27531","DOIUrl":null,"url":null,"abstract":"<p>The magnetic nature of nonalternant hydrocarbon (Azulene) bridged nitronyl nitroxide (AzNN<sub>2</sub>) and imino-nitroxide (AzIN<sub>2</sub>) diradicals are investigated with 38 different DFT functionals to find out a correct functional to predict the magnetic nature of these diradicals. The effect of Hartree–Fock exchange (HFX) in the hybrid functionals are investigated for the prediction of magnetic nature of the nonalternant hydrocarbon bridged diradicals. The utility of Borden and Davidson's proposal of disjoint and nondisjoint SOMOs for the prediction of magnetic nature of alternant hydrocarbon bridged diradicals is assessed for the nonalternant hydrocarbon based diradicals. The more affordable meta-GGA functionals was found to be outperforming the costlier hybrid and double-hybrid functionals in predicting the magnetic properties of nonalternant hydrocarbon-bridged diradicals. HFX significantly influences a functional's ability to predict a diradical's magnetic nature. Interestingly, Borden and Davidson's concept of disjoint and nondisjoint SOMOs, which is used to predict the magnetic behavior of alternant hydrocarbon diradicals, is reversed for nonalternant hydrocarbon-bridged diradicals. The difference in the magnetic nature of the two diradicals come from the canonical molecular orbitals of the diradicals, one has set of disjoint SOMOs and other has nondisjoint SOMOs.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27531","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic nature of nonalternant hydrocarbon (Azulene) bridged nitronyl nitroxide (AzNN2) and imino-nitroxide (AzIN2) diradicals are investigated with 38 different DFT functionals to find out a correct functional to predict the magnetic nature of these diradicals. The effect of Hartree–Fock exchange (HFX) in the hybrid functionals are investigated for the prediction of magnetic nature of the nonalternant hydrocarbon bridged diradicals. The utility of Borden and Davidson's proposal of disjoint and nondisjoint SOMOs for the prediction of magnetic nature of alternant hydrocarbon bridged diradicals is assessed for the nonalternant hydrocarbon based diradicals. The more affordable meta-GGA functionals was found to be outperforming the costlier hybrid and double-hybrid functionals in predicting the magnetic properties of nonalternant hydrocarbon-bridged diradicals. HFX significantly influences a functional's ability to predict a diradical's magnetic nature. Interestingly, Borden and Davidson's concept of disjoint and nondisjoint SOMOs, which is used to predict the magnetic behavior of alternant hydrocarbon diradicals, is reversed for nonalternant hydrocarbon-bridged diradicals. The difference in the magnetic nature of the two diradicals come from the canonical molecular orbitals of the diradicals, one has set of disjoint SOMOs and other has nondisjoint SOMOs.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信