A First-Principle Study Investigating the Half-Metallic and Mechanical Properties of Double Halide Perovskites Rb2OsX6 (X = cl, Br, and I) for Spintronic Applications

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Mohamed Boubchir, Zeyneb Bordjiba, Rabie Amraoui, Rachid Boubchir, Hafid Aourag
{"title":"A First-Principle Study Investigating the Half-Metallic and Mechanical Properties of Double Halide Perovskites Rb2OsX6 (X = cl, Br, and I) for Spintronic Applications","authors":"Mohamed Boubchir,&nbsp;Zeyneb Bordjiba,&nbsp;Rabie Amraoui,&nbsp;Rachid Boubchir,&nbsp;Hafid Aourag","doi":"10.1002/jcc.27537","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, we present a density functional calculation of the structural, electronic, and mechanical properties of cubic double halide perovskites Rb<sub>2</sub>OsX<sub>6</sub> (X = Cl, Br, and I). Our results show that these compounds are stable in the ferromagnetic phase with lattice parameters, bulk modulus, and their first-pressure derivatives in good agreement with other available theoretical data. The negative values of cohesive energy and formation energy, along with the absence of negative or imaginary frequencies in the phonon spectrum, confirm the mechanical stability of all the compounds. The Curie temperature (Tc) is determined using a Heisenberg model in the mean-field approximation. We obtained a half-metallic character for all compounds, making them promising materials for spintronic applications. The magnetic properties indicate that the Os atoms in all compounds are responsible for the magnetism, while the positive exchange constants suggest a strong preference for ferromagnetic alignment. This indicates a stable ferromagnetic phase and potential applications in spintronics. The mechanical properties demonstrate that the compounds studied are isotropic and ductile.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27537","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a density functional calculation of the structural, electronic, and mechanical properties of cubic double halide perovskites Rb2OsX6 (X = Cl, Br, and I). Our results show that these compounds are stable in the ferromagnetic phase with lattice parameters, bulk modulus, and their first-pressure derivatives in good agreement with other available theoretical data. The negative values of cohesive energy and formation energy, along with the absence of negative or imaginary frequencies in the phonon spectrum, confirm the mechanical stability of all the compounds. The Curie temperature (Tc) is determined using a Heisenberg model in the mean-field approximation. We obtained a half-metallic character for all compounds, making them promising materials for spintronic applications. The magnetic properties indicate that the Os atoms in all compounds are responsible for the magnetism, while the positive exchange constants suggest a strong preference for ferromagnetic alignment. This indicates a stable ferromagnetic phase and potential applications in spintronics. The mechanical properties demonstrate that the compounds studied are isotropic and ductile.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信