Single-Walled ZnSe Nanotubes for High-Performance Photodetectors: A Computational Prediction

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shuang Meng, Wenhui Li, Jia Zhou
{"title":"Single-Walled ZnSe Nanotubes for High-Performance Photodetectors: A Computational Prediction","authors":"Shuang Meng,&nbsp;Wenhui Li,&nbsp;Jia Zhou","doi":"10.1002/jcc.27539","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Low-dimensional nanomaterials show great potential for developing semiconducting materials due to their distinct electronic, optical, and mechanical properties. In this study, we constructed various one-dimensional ZnSe nanotubes and investigated their transport and photoresponse properties by using the density functional theory (DFT) and non-equilibrium Green's function (NEGF) method. Under bias regulation, one-dimensional tetragonal ZnSe nanotube curled along the diagonal can reach a current of 111.3 μA at a bias of 4.0 eV. It is worth noting that for all considered photon energies, the photocurrent exhibits a cosine dependence on the polarization angle, which is consistent with the photogalvanic effect. The results show that our constructed ZnSe nanotubes have potential for applications in electronic and optoelectronic devices.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27539","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low-dimensional nanomaterials show great potential for developing semiconducting materials due to their distinct electronic, optical, and mechanical properties. In this study, we constructed various one-dimensional ZnSe nanotubes and investigated their transport and photoresponse properties by using the density functional theory (DFT) and non-equilibrium Green's function (NEGF) method. Under bias regulation, one-dimensional tetragonal ZnSe nanotube curled along the diagonal can reach a current of 111.3 μA at a bias of 4.0 eV. It is worth noting that for all considered photon energies, the photocurrent exhibits a cosine dependence on the polarization angle, which is consistent with the photogalvanic effect. The results show that our constructed ZnSe nanotubes have potential for applications in electronic and optoelectronic devices.

Abstract Image

Abstract Image

用于高性能光电探测器的单壁ZnSe纳米管:计算预测
低维纳米材料由于其独特的电子、光学和机械性能,在半导体材料方面显示出巨大的潜力。本研究利用密度泛函理论(DFT)和非平衡格林函数(NEGF)方法,构建了多种一维ZnSe纳米管,研究了它们的输运和光响应特性。在偏置调节下,沿对角线卷曲的一维方形ZnSe纳米管在偏置4.0 eV时电流可达111.3 μA。值得注意的是,对于所有考虑的光子能量,光电流表现出余弦依赖于偏振角,这与光电效应是一致的。结果表明,我们构建的ZnSe纳米管在电子和光电子器件中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信