Juntao Deng, Miao Gu, Pengyan Zhang, Mingyu Dong, Tao Liu, Yabin Zhang, Min Liu
{"title":"Nanobody–antigen interaction prediction with ensemble deep learning and prompt-based protein language models","authors":"Juntao Deng, Miao Gu, Pengyan Zhang, Mingyu Dong, Tao Liu, Yabin Zhang, Min Liu","doi":"10.1038/s42256-024-00940-5","DOIUrl":null,"url":null,"abstract":"Nanobodies can provide specific binding to divergent antigens, leading to many promising therapeutic and detection applications in recent years. Traditional technologies of nanobody discovery based on alpaca immunization and phage display are very time-consuming and labour-intensive. Despite recent progress in the study of nanobodies, developing fast and accurate computational tools for nanobody–antigen interaction (NAI) prediction is urgently desirable. Here we propose an ensemble deep learning-based framework named DeepNano-seq to predict general protein–protein interaction (PPI) containing NAI from pure sequence information. Quantitative comparison results show that DeepNano-seq possesses the best cross-species generalization ability among existing PPI algorithms. Nevertheless, several of the most effective PPI methods, including DeepNano-seq, demonstrate suboptimal performance for NAI prediction due to the distinction between NAI and PPI at both the pattern and data levels. Therefore, we organize NAI data from the public database for dedicated NAI modelling. Furthermore, we enhance the prediction pipeline of DeepNano-seq by directing the model’s attention to the antigen-binding sites through a prompt-based approach to present the final DeepNano. The comprehensive evaluation demonstrates that DeepNano performs superiorly in NAI prediction and virtual screening of nanobodies. Overall, DeepNano-seq and DeepNano can offer powerful tools for nanobody discovery. Predicting nanobody–antigen interactions is crucial for advancing nanobody development in drug discovery, but it remains a challenging task. Deng et al. propose DeepNano to enhance the prediction of nanobody–antigen interactions, facilitating virtual screening of target nanobodies.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 12","pages":"1594-1604"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00940-5","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nanobodies can provide specific binding to divergent antigens, leading to many promising therapeutic and detection applications in recent years. Traditional technologies of nanobody discovery based on alpaca immunization and phage display are very time-consuming and labour-intensive. Despite recent progress in the study of nanobodies, developing fast and accurate computational tools for nanobody–antigen interaction (NAI) prediction is urgently desirable. Here we propose an ensemble deep learning-based framework named DeepNano-seq to predict general protein–protein interaction (PPI) containing NAI from pure sequence information. Quantitative comparison results show that DeepNano-seq possesses the best cross-species generalization ability among existing PPI algorithms. Nevertheless, several of the most effective PPI methods, including DeepNano-seq, demonstrate suboptimal performance for NAI prediction due to the distinction between NAI and PPI at both the pattern and data levels. Therefore, we organize NAI data from the public database for dedicated NAI modelling. Furthermore, we enhance the prediction pipeline of DeepNano-seq by directing the model’s attention to the antigen-binding sites through a prompt-based approach to present the final DeepNano. The comprehensive evaluation demonstrates that DeepNano performs superiorly in NAI prediction and virtual screening of nanobodies. Overall, DeepNano-seq and DeepNano can offer powerful tools for nanobody discovery. Predicting nanobody–antigen interactions is crucial for advancing nanobody development in drug discovery, but it remains a challenging task. Deng et al. propose DeepNano to enhance the prediction of nanobody–antigen interactions, facilitating virtual screening of target nanobodies.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.