Modulating emotional states of rats through a rat-like robot with learned interaction patterns

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guanglu Jia, Zhe Chen, Yulai Zhang, Zhenshan Bing, Zhenzhen Quan, Xuechao Chen, Alois Knoll, Qiang Huang, Qing Shi
{"title":"Modulating emotional states of rats through a rat-like robot with learned interaction patterns","authors":"Guanglu Jia, Zhe Chen, Yulai Zhang, Zhenshan Bing, Zhenzhen Quan, Xuechao Chen, Alois Knoll, Qiang Huang, Qing Shi","doi":"10.1038/s42256-024-00939-y","DOIUrl":null,"url":null,"abstract":"Robots, integrated into biological systems as sociable partners, offer promising advancement in the mechanistic understanding of social behaviours. These biohybrid systems bring controllability to help elucidate the underlying biological intelligence previously inaccessible through traditional techniques. However, state-of-the-art interactive robots still struggle to convey multilevel, heterogeneous information within biological systems, making it challenging to mediate the complex interaction process effectively. Here we propose an autonomous, interactive rat-like robot that can engage with freely behaving rats by learning from the anatomical structure, dynamic motions and social interaction of rats. Imitation learning based on animal demonstration enables the robot with subtle templates of social behaviour, allowing it to capture the attention of rats and significantly arouse their interest. It also integrates visual perception, target tracking and behavioural decisions to substantially augment the interaction efficiency. We demonstrate that the robot can interact with rats for a continuous half-hour. Moreover, the robot can modulate the emotional states of rats through different interaction patterns during robot–rat social interaction. These results attest that the proposed interactive robot, with its long-term and repetitive interaction capabilities, overcomes the limitations of natural social interaction within biological systems. Such biohybrid systems capable of modulating the internal states of organisms may open the door to comprehending the ‘social’ interactions between humans and artificial intelligence. Interactive robots can be used to study animal social behaviour. Imitation learning can be used to enable a rat-like robot to learn subtle templates of social behaviour, demonstrating that it can modulate the emotional states of rats through varied interaction patterns.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 12","pages":"1580-1593"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00939-y","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Robots, integrated into biological systems as sociable partners, offer promising advancement in the mechanistic understanding of social behaviours. These biohybrid systems bring controllability to help elucidate the underlying biological intelligence previously inaccessible through traditional techniques. However, state-of-the-art interactive robots still struggle to convey multilevel, heterogeneous information within biological systems, making it challenging to mediate the complex interaction process effectively. Here we propose an autonomous, interactive rat-like robot that can engage with freely behaving rats by learning from the anatomical structure, dynamic motions and social interaction of rats. Imitation learning based on animal demonstration enables the robot with subtle templates of social behaviour, allowing it to capture the attention of rats and significantly arouse their interest. It also integrates visual perception, target tracking and behavioural decisions to substantially augment the interaction efficiency. We demonstrate that the robot can interact with rats for a continuous half-hour. Moreover, the robot can modulate the emotional states of rats through different interaction patterns during robot–rat social interaction. These results attest that the proposed interactive robot, with its long-term and repetitive interaction capabilities, overcomes the limitations of natural social interaction within biological systems. Such biohybrid systems capable of modulating the internal states of organisms may open the door to comprehending the ‘social’ interactions between humans and artificial intelligence. Interactive robots can be used to study animal social behaviour. Imitation learning can be used to enable a rat-like robot to learn subtle templates of social behaviour, demonstrating that it can modulate the emotional states of rats through varied interaction patterns.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信