Jinling Chen, Hongli Chi, Chao Wang, Yanlin Du, Yani Wang, Shijie Yang, Shiqi Jiang, Xinru Lv, Jiaxuan He, Jingyi Chen, Ting Fu, Zeng Wang, Ming Cheng, Keli An, Penghui Zhang, Weihong Tan
{"title":"Programmable Circular Multispecific Aptamer-Drug Engager to Broadly Boost Antitumor Immunity","authors":"Jinling Chen, Hongli Chi, Chao Wang, Yanlin Du, Yani Wang, Shijie Yang, Shiqi Jiang, Xinru Lv, Jiaxuan He, Jingyi Chen, Ting Fu, Zeng Wang, Ming Cheng, Keli An, Penghui Zhang, Weihong Tan","doi":"10.1021/jacs.4c06189","DOIUrl":null,"url":null,"abstract":"Safely and effectively harnessing innate immunity to boost cancer immunotherapy is promising yet challenging. Hence, we have developed a series of programmable aptamer-based multispecific engagers by encoding various artificial aptamer-drug codons with DNA-templated polymerization, aiming to broadly boost innate and adaptive immunity for antitumor therapy. All circular single-stranded multivalent aptamer-drug conjugates (os-mvApDCs) had a dendritic structure, precise size, and excellent stability, enabling prolonged blood circulation, targeted tumor accumulation, and rapid multireceptor-mediated endocytosis. A trispecific engager (<sup>Sl/Pd/Mj</sup>os-mvApDCs<sup>SMT</sup>), targeting PD-1 on CD8<sup>+</sup> T cells and PD-L1/c-Met on tumor cells, recruited large amounts of immune cells into the tumor and released cytotoxic MMAE and immunomodulators, inducing severe cell death and broad activation of innate immunity. When combined with the αPD-1 blockade, there was a significant increase in the number of CD8<sup>+</sup> T cells (10-fold increase versus untreated control) engaged and expanded in the tumor, exhibiting potent function (IFN-γ<sup>+</sup>/GzmB<sup>+</sup>) and low exhaustion (PD-1<sup>+</sup>TIM-3<sup>+</sup>). The orchestrated innate and adaptive immunity effectively eliminated immunosuppressive MDSCs, Tregs, and M2-like macrophages in tumors and promoted the maturation of dendritic cells (DCs) in the draining lymph nodes, resulting in robust and durable systemic antitumor efficacy, with 7 out of 8 mice surviving over 60 days. Our programmable DNA-templated printing technology enables the rational design of multispecific therapeutics with modular composition and function but minimal production issues, providing a versatile tool for the development of multifunctional personalized medicine.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"35 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c06189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Safely and effectively harnessing innate immunity to boost cancer immunotherapy is promising yet challenging. Hence, we have developed a series of programmable aptamer-based multispecific engagers by encoding various artificial aptamer-drug codons with DNA-templated polymerization, aiming to broadly boost innate and adaptive immunity for antitumor therapy. All circular single-stranded multivalent aptamer-drug conjugates (os-mvApDCs) had a dendritic structure, precise size, and excellent stability, enabling prolonged blood circulation, targeted tumor accumulation, and rapid multireceptor-mediated endocytosis. A trispecific engager (Sl/Pd/Mjos-mvApDCsSMT), targeting PD-1 on CD8+ T cells and PD-L1/c-Met on tumor cells, recruited large amounts of immune cells into the tumor and released cytotoxic MMAE and immunomodulators, inducing severe cell death and broad activation of innate immunity. When combined with the αPD-1 blockade, there was a significant increase in the number of CD8+ T cells (10-fold increase versus untreated control) engaged and expanded in the tumor, exhibiting potent function (IFN-γ+/GzmB+) and low exhaustion (PD-1+TIM-3+). The orchestrated innate and adaptive immunity effectively eliminated immunosuppressive MDSCs, Tregs, and M2-like macrophages in tumors and promoted the maturation of dendritic cells (DCs) in the draining lymph nodes, resulting in robust and durable systemic antitumor efficacy, with 7 out of 8 mice surviving over 60 days. Our programmable DNA-templated printing technology enables the rational design of multispecific therapeutics with modular composition and function but minimal production issues, providing a versatile tool for the development of multifunctional personalized medicine.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.