{"title":"Strong stationarity for non-smooth control problems with fractional semi-linear elliptic equations in dimension $$N\\le 3$$","authors":"Cyrille Kenne, Gisèle Mophou, Mahamadi Warma","doi":"10.1007/s13540-024-00359-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the optimal control of a semi-linear fractional PDEs involving the spectral diffusion operator, or the realization of the integral fractional Laplace operator with the zero Dirichlet exterior condition, both of order <i>s</i> with <span>\\(s\\in (0,1)\\)</span>. The state equation contains a non-smooth nonlinearity, and the objective functional is convex in the control variable but contains non-smooth terms. As the mappings involved may not be Gâteaux differentiable, we use a regularization technique to regularize these nonlinear terms, aiming to obtain Gâteaux differentiable mappings. By employing this regularization technique, we are able to derive the first-order optimality condition for the regularized control problem by using the associated adjoint system. Furthermore, we conduct a limit analysis on the regularized term resulting in an optimality system for the non-smooth problem of C-stationary type. Subsequently, we establish a primal optimality condition, specifically B-stationarity. Under the assumption of “constraint qualification”, we derive the strong stationarity conditions for the non-smooth optimization problem with control constraints and establish the equivalence between B-stationarity and strong stationarity conditions.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00359-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the optimal control of a semi-linear fractional PDEs involving the spectral diffusion operator, or the realization of the integral fractional Laplace operator with the zero Dirichlet exterior condition, both of order s with \(s\in (0,1)\). The state equation contains a non-smooth nonlinearity, and the objective functional is convex in the control variable but contains non-smooth terms. As the mappings involved may not be Gâteaux differentiable, we use a regularization technique to regularize these nonlinear terms, aiming to obtain Gâteaux differentiable mappings. By employing this regularization technique, we are able to derive the first-order optimality condition for the regularized control problem by using the associated adjoint system. Furthermore, we conduct a limit analysis on the regularized term resulting in an optimality system for the non-smooth problem of C-stationary type. Subsequently, we establish a primal optimality condition, specifically B-stationarity. Under the assumption of “constraint qualification”, we derive the strong stationarity conditions for the non-smooth optimization problem with control constraints and establish the equivalence between B-stationarity and strong stationarity conditions.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.